login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = 11*k*n + 14*(n+k) + 20 (0 <= k <= n).
0

%I #13 Jul 14 2019 12:38:05

%S 20,34,59,48,84,120,62,109,156,203,76,134,192,250,308,90,159,228,297,

%T 366,435,104,184,264,344,424,504,584,118,209,300,391,482,573,664,755,

%U 132,234,336,438,540,642,744,846,948,146,259,372,485,598,711,824,937

%N Triangle read by rows: T(n,k) = 11*k*n + 14*(n+k) + 20 (0 <= k <= n).

%C Kekulé numbers for certain benzenoids.

%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 102).

%F G.f.: (20 - 6*z - t*z - 16*t*z^2 + 3*t^2*z^2)/((1-z)^2*(1-t*z)^3).

%e Triangle begins:

%e 20;

%e 34,59;

%e 48,84,120;

%e 62,109,156,203;

%p T:=proc(n,k) if k<=n then 11*k*n+14*(n+k)+20 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

%t Table[11*k*n+14(n+k)+20,{n,0,10},{k,0,n}]//Flatten (* _Harvey P. Dale_, Jul 14 2019 *)

%K nonn,tabl

%O 0,1

%A _Emeric Deutsch_, Jun 14 2005