

A108660


Squareloop primes.


4



2, 13, 31, 79, 97, 227, 881, 1013, 2797, 3181, 3631, 8101, 22727, 81001, 101363, 109013, 131363, 181813, 272227, 310181, 310901, 318181, 318881, 631013, 636313, 810401, 818101, 901097, 904097, 972227, 1018813, 1090013, 1810013, 2272727
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes such that each pair of adjacent digits (and also the first and the last ones) sums up to a square. First term is arguable since there is 'no pair of adjacent digits', but there are the "first" and "last" digits.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..120


MATHEMATICA

Select[Prime[Range[200000]], And@@(IntegerQ[Sqrt[#]]&/@(Total/@Partition[ IntegerDigits[#], 2, 1, 1]))&] (* Harvey P. Dale, Mar 03 2014 *)


CROSSREFS

Cf. A046704, A007953, A088133, A088134, A088135, A088136, A108659.
Sequence in context: A158720 A108659 A086924 * A107132 A106959 A285096
Adjacent sequences: A108657 A108658 A108659 * A108661 A108662 A108663


KEYWORD

nonn,base


AUTHOR

Zak Seidov, Jun 16 2005


STATUS

approved



