login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies x = A(x)*(1-A(x))/(1-A(x)-(A(x))^2).
6

%I #22 Oct 20 2023 01:45:29

%S 1,0,-1,-1,1,4,3,-8,-23,-10,67,153,9,-586,-1081,439,5249,7734,-7941,

%T -47501,-53791,105314,430119,343044,-1249799,-3866556,-1730017,

%U 13996097,34243897,1947204,-150962373,-296101864,121857185,1582561870

%N G.f. satisfies x = A(x)*(1-A(x))/(1-A(x)-(A(x))^2).

%C Row sums of inverse of Riordan array (1/(1-x-x^2), x*(1-x)/(1-x-x^2)) (Cf. A053538). - _Paul Barry_, Nov 01 2006

%H Vincenzo Librandi, <a href="/A108623/b108623.txt">Table of n, a(n) for n = 1..1000</a>

%F Binomial transform of A105523. - _Paul Barry_, Nov 01 2006

%F G.f.: (1+x-sqrt(1-2*x+5*x^2))/(2*(1-x)). - _Paul Barry_, Nov 01 2006

%F Conjecture: n*a(n) +3*(1-n)*a(n-1) +(7*n-18)*a(n-2) +5*(3-n)*a(n-3)=0. - _R. J. Mathar_, Nov 15 2011

%F Lim sup_{n->infinity} |a(n)|^(1/n) = sqrt(5). - _Vaclav Kotesovec_, Feb 08 2014

%F Series reversion of g.f. of A212804. - _Michael Somos_, May 19 2014

%F G.f.: x / (1 - x + x /(1 - x / (1 - x + x / (1 - x / ...)))). - _Michael Somos_, May 19 2014

%F 0 = a(n)*(25*a(n+1) - 50*a(n+2) + 45*a(n+3) - 20*a(n+4)) + a(n+1)*(-20*a(n+1) + 34*a(n+2) - 44*a(n+3) + 25*a(n+4) + a(n+2)*(12*a(n+2) - 2*a(n+3) - 6*a(n+4) + a(n+3)*(a(n+4)) if n>=0. - _Michael Somos_, May 19 2014

%e G.f. = x - x^3 - x^4 + x^5 + 4*x^6 + 3*x^7 - 8*x^8 - 23*x^9 - 10*x^10 + ...

%p # Using function CompInv from A357588.

%p CompInv(34, n -> ifelse(n=-1, 1, combinat:-fibonacci(n-2))); # _Peter Luschny_, Oct 05 2022

%t CoefficientList[Series[(1+x-Sqrt[1-2*x+5*x^2])/(2*x*(1-x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 08 2014 *)

%t a[ n_] := SeriesCoefficient[ (1 + x - Sqrt[1 - 2 x + 5 x^2]) / (2 (1 - x)), {x, 0, n}]; (* _Michael Somos_, May 19 2014 *)

%t a[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ (x - x^2) / (1 - x - x^2), {x, 0, n}]], {x, 0, n}]]; (* _Michael Somos_, May 19 2014 *)

%o (PARI) {a(n) = if( n<0, 0, polcoeff( (1 + x - sqrt(1 - 2*x + 5*x^2 + x^2 * O(x^n))) / (2 * (1 - x)), n))}; /* _Michael Somos_, May 19 2014 */

%o (PARI) {b(n) = if( n<1, 0, polcoeff( serreverse( (x - x^2) / (1 - x - x^2) + x * O(x^n)), n))}; /* _Michael Somos_, May 19 2014 */

%o (Magma)

%o R<x>:=PowerSeriesRing(Rationals(), 41);

%o Coefficients(R!( (1+x-Sqrt(1-2*x+5*x^2))/(2*(1-x)) )); // _G. C. Greubel_, Oct 20 2023

%o (SageMath)

%o def A108623_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1+x-sqrt(1-2*x+5*x^2))/(2*(1-x)) ).list()

%o a=A108623_list(41); a[1:] # _G. C. Greubel_, Oct 20 2023

%Y Except for signs, same as A108624.

%Y Cf. A039978, A105523, A212804.

%K sign

%O 1,6

%A _Christian G. Bower_, Jun 12 2005