login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 0, a(1) = a(2) = 1, a(3) = 2, a(4) = 4, for n>3: a(n+1) = SORT[ a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4)], where SORT places digits in ascending order and deletes 0's.
3

%I #14 May 16 2019 14:57:10

%S 0,1,1,2,4,8,16,13,34,57,128,248,48,155,366,459,1267,2259,456,478,

%T 1499,5599,1129,1169,4789,11458,12444,3899,33579,16669,4789,1378,1346,

%U 15677,35899,5899,1699,256,3459,12247,2356,127,14458,23467,25556,45669,12779

%N a(0) = 0, a(1) = a(2) = 1, a(3) = 2, a(4) = 4, for n>3: a(n+1) = SORT[ a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4)], where SORT places digits in ascending order and deletes 0's.

%C Sorted Pentanacci Numbers, a.k.a. Sorted Fibonacci 5-step Sequence.

%C Corrected and extended by _T. D. Noe_, who also found that Max = 334566999 occurs at a(67701). However, this is the only time that the maximum occurs. The cycle period has length 251784 and begins at a(1183787). Primes include: a(3) = 2, a(7) = 13, a(20) = 1499, a(22) = 1129, a(24) = 4789, a(30) = 4789, a(34) = 35899, a(36) = 1699, a(41) = 127, a(52) = 124577, a(62) = 33889, a(66) = 1579, a(67) = 25667, a(71) = 2789, a(80) = 4567, a(82) = 57899, a(87) = 23399, a(89) = 245899, a(90) = 349, a(93) = 346669. Semiprimes include: a(4) = 4 = 2^2, a(8) = 34 = 2 * 17, a(9) = 57 = 3 * 19, a(13) = 155 = 5 * 31, a(16) = 1267 = 7 * 181, a(19) = 478 = 2 * 239, a(21) = 5599 = 11 * 509, a(23) = 1169 = 7 * 167, a(27) = 3899 = 7 * 557, a(29) = 16669 = 79 * 211, a(32) = 1346 = 2 * 673, a(33) = 15677 = 61 * 257, a(35) = 5899 = 17 * 347, a(38) = 3459 = 3 * 1153, a(39) = 12247 = 37 * 331, a(42) = 14458 = 2 * 7229, a(43) = 23467 = 31 * 757, a(46) = 12779 = 13 * 983, a(48) = 12779 = 13 * 983, a(51) = 234557 = 163 * 1439, a(53) = 47899 = 19 * 2521, a(54) = 12459 = 3 * 4153, a(58) = 158 = 2 * 79, a(60) = 22299 = 3 * 7433, a(64) = 4579 = 19 * 241, a(65) = 689 = 13 * 53, a(70) = 24599 = 17 * 1447, a(74) = 26678 = 2 * 13339, a(75) = 1579, a(77) = 16789 = 103 * 163, a(78) = 2489 = 19 * 131, a(84) = 111379 = 127 * 877, a(85) = 122333 = 71 * 1723, a(86) = 34899 = 3 * 11633, a(99) = 1344479 = 17 * 79087, a(100) = 1245889 = 337 * 3697.

%H Harvey P. Dale, <a href="/A108565/b108565.txt">Table of n, a(n) for n = 0..1000</a>

%H Richard I. Hess, <a href="http://www.pme-math.org/journal/issues/PMEJ.Vol.10.No.9.pdf">Problem 920: sorted Fibonacci sequence</a>, Pi Mu Epsilon Journal, Vol. 10 (Fall 1998) No. 9, pp. 754-755.

%e a(8) = SORT[a(3) + a(4) + a(5) + a(6) + a(7)] = SORT[61] = 16.

%t nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,FromDigits[Select[Sort[ IntegerDigits[ a+b+c+d+e]],#!=0&]]}; NestList[nxt,{0,1,1,2,4},50][[All,1]]

%Y Cf. A001591, A069638, A107281, A108564, A108566-A108573.

%K base,easy,nonn

%O 0,4

%A _Jonathan Vos Post_, Jun 10 2005