login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fully multiplicative with a(prime(j)) = A108546(j), where A108546 is the lexicographically earliest permutation of primes such that after 2 the forms 4*k+1 and 4*k+3 alternate, and prime(j) is the j-th prime in A000040.
14

%I #30 Apr 26 2022 16:09:18

%S 1,2,3,4,5,6,7,8,9,10,13,12,11,14,15,16,17,18,19,20,21,26,29,24,25,22,

%T 27,28,23,30,37,32,39,34,35,36,31,38,33,40,41,42,43,52,45,58,53,48,49,

%U 50,51,44,47,54,65,56,57,46,61,60,59,74,63,64,55,78,73,68,87,70,67,72

%N Fully multiplicative with a(prime(j)) = A108546(j), where A108546 is the lexicographically earliest permutation of primes such that after 2 the forms 4*k+1 and 4*k+3 alternate, and prime(j) is the j-th prime in A000040.

%C Multiplicative with a(2^e) = 2^e, else if p is the m-th prime then a(p^e) = q^e where q is the m/2-th prime of the form 4*k + 3 (A002145) for even m and a(p^e) = r^e where r is the (m-1)/2-th prime of the form 4*k + 1 (A002144) for odd m. - _David A. Corneth_, Apr 25 2022

%C Permutation of the natural numbers with fixed points A108549: a(A108549(n)) = A108549(n).

%H Antti Karttunen, <a href="/A108548/b108548.txt">Table of n, a(n) for n = 1..26927</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%t terms = 72;

%t A111745 = Module[{prs = Prime[Range[2 terms]], m3, m1, min},

%t m3 = Select[prs, Mod[#, 4] == 3&];

%t m1 = Select[prs, Mod[#, 4] == 1&];

%t min = Min[Length[m1], Length[m3]];

%t Riffle[Take[m3, min], Take[m1, min]]];

%t A108546[n_] := If[n == 1, 2, A111745[[n - 1]]];

%t A049084[n_] := PrimePi[n]*Boole[PrimeQ[n]];

%t a[n_] := If[n == 1, 1, Module[{p, e}, Product[{p, e} = pe; A108546[A049084[p]]^e, {pe, FactorInteger[n]}]]];

%t Array[a, terms] (* _Jean-François Alcover_, Nov 19 2021, using _Harvey P. Dale_'s code for A111745 *)

%o (PARI)

%o up_to = 26927; \\ One of the prime fixed points.

%o A108546list(up_to) = { my(v=vector(up_to), p,q); v[1] = 2; v[2] = 3; v[3] = 5; for(n=4,up_to, p = v[n-2]; q = nextprime(1+p); while(q%4 != p%4, q=nextprime(1+q)); v[n] = q); (v); };

%o v108546 = A108546list(up_to);

%o A108546(n) = v108546[n];

%o A108548(n) = { my(f=factor(n)); f[,1] = apply(A108546,apply(primepi,f[,1])); factorback(f); }; \\ _Antti Karttunen_, Apr 25 2022

%Y Cf. A002144, A002145, A049084, A108546, A108549 (fixed points), A332808 (inverse permutation).

%Y Cf. also A332815, A332817 (this permutation applied to Doudna tree and its mirror image), also A332818, A332819.

%Y Cf. also A267099, A332212 and A348746 for other similar mappings.

%K nonn,mult,look

%O 1,2

%A _Reinhard Zumkeller_, Jun 10 2005

%E Name edited by _Antti Karttunen_, Apr 25 2022