login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of increasing rooted trees with n generators.
5

%I #16 Aug 11 2014 22:45:27

%S 1,2,9,70,771,10948,190205,3907494,92654059,2490459468,74827519077,

%T 2485153213814,90403692195179,3574835773247140,152675377606343901,

%U 7003761877546096278,343454890456254782203,17929588055863943650988

%N Number of increasing rooted trees with n generators.

%C A generator is a leaf or a node with just one child.

%C In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.

%H Vaclav Kotesovec, <a href="/A108522/b108522.txt">Table of n, a(n) for n = 1..250</a>

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F E.g.f. satisfies: 2*A(x) = x - 1 + exp(A(x)) + Integral A(x) dx. - corrected by _Vaclav Kotesovec_ and _Paul D. Hanna_, Mar 29 2014

%F From _Paul D. Hanna_, Mar 29 2014: (Start)

%F E.g.f. satisfies: A(x) = A'(x)*(2 - exp(A(x))) - 1.

%F E.g.f. satisfies: A'(x) = (1 + A(x))/(2 - exp(A(x)).

%F (End)

%F a(n) ~ c * n^(n-1) / (exp(n) * r^n), where r = 0.3160173586544089316502903103262192204293322854083... and c = 0.51723490785798357350192800634304... - _Vaclav Kotesovec_, Mar 29 2014

%o (PARI) {a(n)=local(A=x);for(i=1,n,A=intformal((1+A)/(2-exp(A+x*O(x^n)))) );n!*polcoeff(A,n)}

%o for(n=1,20,print1(a(n),", ")) \\ _Paul D. Hanna_, Mar 29 2014

%Y Cf. A108521-A108529, A007151, A001147.

%K nonn

%O 1,2

%A _Christian G. Bower_, Jun 07 2005