login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (-1-x-x^2-4*x^3-4*x^4+4*x^5+x^6+x^7+x^8) / ((x+1)*(x^2-x+1)*(x^2+x-1)*(x^4-x^3+2*x^2+x+1)).
2

%I #17 Mar 15 2024 14:24:21

%S 1,1,1,7,7,-1,25,25,1,111,111,-1,465,465,1,1975,1975,-1,8361,8361,1,

%T 35423,35423,-1,150049,150049,1,635623,635623,-1,2692537,2692537,1,

%U 11405775,11405775,-1,48315633,48315633,1,204668311,204668311,-1,866988873,866988873,1,3672623807,3672623807,-1

%N Expansion of (-1-x-x^2-4*x^3-4*x^4+4*x^5+x^6+x^7+x^8) / ((x+1)*(x^2-x+1)*(x^2+x-1)*(x^4-x^3+2*x^2+x+1)).

%C Floretion Algebra Multiplication Program, FAMP Code: (a_n) = 2ibaseforcycfizseq[ + .5'i + .5'j + .5'k + .5e], A000004 = 1vesforcycfizseq, FizType = ('i, 'j, 'k)

%H Colin Barker, <a href="/A108390/b108390.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3,0,0,5,0,0,1).

%F a(n) = 3*a(n-3) + 5*a(n-6) + a(n-9) for n>8. - _Colin Barker_, May 12 2019

%t CoefficientList[Series[(-1-x-x^2-4x^3-4x^4+4x^5+x^6+x^7+x^8)/ ((x+1) (x^2-x+1)(x^2+x-1)(x^4-x^3+2x^2+x+1)),{x,0,50}],x] (* _Harvey P. Dale_, Sep 15 2011 *)

%o (PARI) Vec((-1-x-x^2-4*x^3-4*x^4+4*x^5+x^6+x^7+x^8)/((x+1)*(x^2-x+1)*(x^2+x-1)*(x^4-x^3+2*x^2+x+1))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012

%Y Cf. A108391.

%K sign,easy

%O 0,4

%A _Creighton Dement_, Jun 01 2005