login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108382 Primes p such that p's set of distinct digits is {1,3,7}. 6
137, 173, 317, 1373, 1733, 3137, 3371, 7331, 11173, 11317, 11731, 13171, 13177, 13337, 13711, 17137, 17317, 17333, 17377, 17713, 17737, 31177, 31337, 31771, 33317, 33713, 37117, 37171, 37313, 37717, 71317, 71333, 71713, 73133, 73331 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
MAPLE
S1[1] := {1}: S3[1]:= {3}: S7[1]:= {7}:
S13[1]:= {}: S17[1]:= {}: S37[1]:={}:
S137[1]:= {}:
for n from 2 to 5 do
S1[n]:= map(t -> 10*t+1, S1[n-1]);
S3[n]:= map(t -> 10*t+3, S3[n-1]);
S7[n]:= map(t -> 10*t+7, S7[n-1]);
S13[n]:= map(t -> 10*t+1, S13[n-1] union S3[n-1]) union
map(t -> 10*t+3, S13[n-1] union S1[n-1]);
S17[n]:= map(t -> 10*t+1, S17[n-1] union S7[n-1]) union
map(t -> 10*t+7, S17[n-1] union S1[n-1]);
S37[n]:= map(t -> 10*t+3, S37[n-1] union S7[n-1]) union
map(t -> 10*t+7, S37[n-1] union S3[n-1]);
S137[n]:= map(t -> 10*t+1, S137[n-1] union S37[n-1]) union
map(t -> 10*t+3, S137[n-1] union S17[n-1]) union
map(t -> 10*t+7, S137[n-1] union S13[n-1]);
od:
sort(convert(`union`(seq(select(isprime, S137[n]), n=3..5)), list)); # Robert Israel, Jan 16 2019
MATHEMATICA
Select[Prime[Range[7300]], Union[IntegerDigits[#]]=={1, 3, 7}&] (* Harvey P. Dale, Jun 11 2013 *)
CROSSREFS
Cf. A108383 ({1, 3, 9}), A108384 ({1, 7, 9}), A108385 ({3, 7, 9}), A108386 ({1, 3, 7, 9}), A030096 (Primes whose digits are all odd).
Sequence in context: A114645 A057879 A179912 * A106280 A356980 A139510
KEYWORD
base,nonn
AUTHOR
Rick L. Shepherd, Jun 01 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 21:15 EDT 2024. Contains 374377 sequences. (Running on oeis4.)