

A108375


Least positive k such that k * [RSA200]^n  1 is prime, where RSA200 is defined in the Wikinews link.


2



356, 810, 1364, 1188, 1490, 4178, 164, 11312, 26, 4058, 11234, 3398, 278, 4530, 2804, 7248, 14544, 942, 3504, 4704, 21194, 2708, 14636, 3222, 6990, 948, 48260, 4974, 6636, 10646, 12062, 4944, 28296, 7302, 89264, 2814, 35396, 8688, 19166, 18744
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Another term is a(51)=854. All values have been proved prime. Primality proof for a(51), which has 10175 digits: PFGW Version 1.2.0 for Windows [FFT v23.8] Primality testing 854*(279978 ... [digits deleted] ... 823983)^511 [N+1, BrillhartLehmerSelfridge] Reading factors from helper file help.txt Running N+1 test using discriminant 5, base 4+sqrt(5) Calling BrillhartLehmerSelfridge with factored part 50.07% 854*(279978 ... [digits deleted] ... 823983)^511 is prime! (68.4205s+0.0510s) ======== Also, the Primeform egroup found 25987968300*[RSA200]^5121 and 49334180280*[RSA200]^5121, each with 102128 digits (see link).


LINKS



CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



