login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, generated from (..., 3, 2, 1).
3

%I #20 Feb 07 2022 08:17:06

%S 1,1,3,1,5,6,1,7,17,10,1,9,34,49,15,1,11,57,142,129,21,1,13,86,313,

%T 547,321,28,1,15,121,586,1593,2005,769,36,1,17,162,985,3711,7737,7108,

%U 1793,45,1,19,209,1534,7465,22461,36409,24604,4097,55,1,21,262,2257,13539,54121,131836,167481,83653,9217,66

%N Triangle read by rows, generated from (..., 3, 2, 1).

%C Inverse binomial transforms of each column form the rows of A108284. Rightmost diagonal = triangular numbers, (A000217); while diagonals going to the left from (1, 3, 6, ...) are A000337 starting with 1: (1, 5, 17, 49, ...); A014915: (1, 7, 34, 142, ...); A014916: (1, 9, 57, ...); A014917: (1, 11, 86, ...).

%F n-th column = f(x), x = 1, 2, 3; n*x^(n-1) + (n-1)*x^(n-2) + (n-3)*x^(n-3) + ... + 1.

%F T(n,k) = (1+ (n-k+1)^k*(n*k-k^2-1))/ (n-k)^2, n>k. - _Jean-François Alcover_, Sep 13 2016

%e 4th column = 10, 49, 142, 313, ... = f(x), x = 1, 2, 3; 4x^3 + 3x^2 + 2x + 1. f(3) = 142.

%e First few rows of the triangle:

%e 1;

%e 1, 3;

%e 1, 5, 6;

%e 1, 7, 17, 10;

%e 1, 9, 34, 49, 15;

%e 1, 11, 57, 142, 129, 21;

%e ...

%p A108283 := proc(n,k)

%p local x ;

%p x := n-k+1 ;

%p add( i*x^(i-1),i=1..k) ;

%p end proc:

%p seq(seq( A108283(n,k),k=1..n),n=1..10) ; # _R. J. Mathar_, Sep 14 2016

%t T[_, 1] := 1; T[n_, n_] := n (n + 1)/2; T[n_, k_] := (1 - (n - k + 1)^k*(k^2 - k*n + 1))/(n - k)^2; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 13 2016 *)

%Y Cf. A059045, A108284, A000217, A000337, A014915, A014916, A014917.

%K nonn,tabl,easy

%O 1,3

%A _Gary W. Adamson_, May 30 2005

%E More terms from _Jean-François Alcover_, Sep 13 2016