login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Consider primes p and q such that p = 2^k + 21 and q = 2^(k+1) + 21 for some k; sequence gives values of p.
1

%I #12 May 12 2019 12:51:32

%S 29,37,149,32789,2251799813685269

%N Consider primes p and q such that p = 2^k + 21 and q = 2^(k+1) + 21 for some k; sequence gives values of p.

%C No additional terms up to k = 2000. - _Harvey P. Dale_, May 12 2019

%t Select[Partition[2^Range[60]+21,2,1],AllTrue[#,PrimeQ]&][[All,1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, May 12 2019 *)

%o (PARI) g(m,n,b) = { for(x=0,n, y=m+b^x+b%2; z=m+b^(x+1)+b%2; if(isprime(y)&isprime(z),print1(y",") ) ) }

%Y Cf. A108273.

%K nonn

%O 1,1

%A _Cino Hilliard_, Jun 29 2005