Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:45:19
%S 9,21,25,33,49,57,65,69,77,85,93,121,129,133,141,145,161,169,177,185,
%T 201,205,209,213,217,221,237,249,253,265,289,301,305,309,321,329,341,
%U 361,365,377,381,393,413,417,437,445,453,469,473,481,485,489,493,497
%N Semiprimes of the form 4n + 1.
%C Either a(n)=(4*i+1)*(4*j+1) or a(n)=(4*i+3)*(4*j+3); - _Reinhard Zumkeller_, Jun 15 2005
%C A107978 is a subsequence. - _Reinhard Zumkeller_, Jun 15 2005
%H Vincenzo Librandi, <a href="/A108181/b108181.txt">Table of n, a(n) for n = 1..1000</a>
%H K. Ford, Jason Sneed, <a href="http://dx.doi.org/10.1080/10586458.2010.10390630">Chebyshev's Bias for products of two primes</a>, Exper. Math. 19 (4) (2010) 385-398
%t Select[4Range[0, 150] + 1, PrimeOmega[#] == 2&] (* _Vincenzo Librandi_, Sep 22 2012 *)
%o (Magma) IsSemiprime:= func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [2..150] | IsSemiprime(s) where s is 4*n + 1]; // _Vincenzo Librandi_, Sep 22 2012
%Y Cf. A080774, A001358, A002144, A002145, A107978, A121387.
%K easy,nonn
%O 1,1
%A _Giovanni Teofilatto_, Jun 14 2005
%E Corrected and extended by _Reinhard Zumkeller_, Jun 15 2005