login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows, where T(0,0) = 1, T(n,k) = (-1)^(n+k)*T(n-1,k) + T(n-1,k-1); a signed version of Pascal's triangle.
2

%I #9 Dec 02 2022 07:05:15

%S 1,-1,1,-1,-2,1,1,-3,-3,1,1,4,-6,-4,1,-1,5,10,-10,-5,1,-1,-6,15,20,

%T -15,-6,1,1,-7,-21,35,35,-21,-7,1,1,8,-28,-56,70,56,-28,-8,1,-1,9,36,

%U -84,-126,126,84,-36,-9,1,-1,-10,45,120,-210,-252,210,120,-45,-10,1,1,-11,-55,165,330,-462,-462,330,165,-55,-11,1

%N Triangle, read by rows, where T(0,0) = 1, T(n,k) = (-1)^(n+k)*T(n-1,k) + T(n-1,k-1); a signed version of Pascal's triangle.

%H G. C. Greubel, <a href="/A108086/b108086.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n,k) = (-1)^(n+k)*T(n-1,k) + T(n-1,k-1), with T(0, 0) = 1.

%F T(n, k) = (-1)^floor((n-k+1)/2) * A007318(n, k).

%F From _G. C. Greubel_, Dec 02 2022: (Start)

%F T(2*n, n) = (-1)^binomial(n+1,2) * A000984(n).

%F T(2*n, n+1) = (-1)^binomial(n,2) * A001791(n), n >= 1.

%F T(2*n, n-1) = (-1)^binomial(n+2,2) * A001791(n).

%F T(2*n+1, n-1) = (-1)^binomial(n-1,2) * A002054(n).

%F T(2*n+1, n+1) = (-1)^binomial(n+1,2) * A001700(n+1).

%F Sum_{k=0..n} T(n, k) = (-1)^n * A090132(n).

%F Sum_{k=0..n} (-1)^k * T(n, k) = A108520(n).

%F Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^n * A260192(n-1).

%F Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A333378(n+1). (End)

%t A108086[n_, k_]:= (-1)^(Floor[(n-k+1)/2])*Binomial[n, k];

%t Table[A108086[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 02 2022 *)

%o (Magma)

%o A108086:= func< n,k | (-1)^Floor((n-k+1)/2)*Binomial(n,k) >;

%o [A108086(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Dec 02 2022

%o (SageMath)

%o def A108086(n,k): return (-1)^int((n-k+1)/2)*binomial(n,k)

%o flatten([[A108086(n,k) for k in range(n+1)] for n in range(14)]) # _G. C. Greubel_, Dec 02 2022

%Y Cf. A000984, A001700, A002054, A007318, A009116.

%Y Cf. A090132, A108520, A260192, A333378.

%K sign,tabl

%O 0,5

%A _Gerald McGarvey_, Jun 05 2005