Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Mar 15 2024 15:20:05
%S 0,1,6,28,136,656,3168,15296,73856,356608,1721856,8313856,40142848,
%T 193826816,935878656,4518821888,21818802176,105350496256,508677193728,
%U 2456110759936,11859151814656,57261050298368,276480808452096
%N a(n+1) = 4*(a(n)+a(n-1)) for n>1, a(1)=1, a(2)=6.
%C Let (a_n) be the sequence and (a_(n+1)) the sequence beginning at 1. Let B and iB be the binomial and inverse binomial transforms, respectively. Then B((a_n)) = A001108(n) (a(n)-th triangular number is a square); B((a_(n+1))) = A002315(n) (NSW Numbers); iB((a_(n+1))) = A096980(n). Note: a 2nd sequence generated by the same floretion is A057087 (Scaled Chebyshev U-polynomials evaluated at i. Generalized Fibonacci sequence.). As is often the case with two sequences corresponding to a single floretion, both satisfy the same recurrence relation.
%C Floretion Algebra Multiplication Program, FAMP Code: (a_n) = 2ibasekseq[A*B] (with initial term zero), (a_(n+1)) = 1tesseq[A*B], A = + .5'i - .5'j + .5'k + .5i' - .5j' + .5k' - .5'ij' - .5'ik' - .5'ji' - .5'ki'; B = - .5'i + .5'j + .5'k - .5i' + .5j' + .5k' - .5'ik' - .5'jk' - .5'ki' - .5'kj'
%H Vincenzo Librandi, <a href="/A108051/b108051.txt">Table of n, a(n) for n = 0..1000</a>
%H Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, <a href="http://www.emis.de/journals/JIS/VOL18/Szczyrba/sz3.pdf">Analytic Representations of the n-anacci Constants and Generalizations Thereof</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
%H Robert Munafo, <a href="http://www.mrob.com/pub/math/seq-floretion.html">Sequences Related to Floretions</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,4).
%F a(n+1) = -(1/2)*(2-2*2^(1/2))^n*(-1+2^(1/2))-(1/2)*(2+2*2^(1/2))^n(-1-2^(1/2)); G.f.: x*(1+2*x)/(1-4*x-4*x^2).
%F a(n) = sum{k=0..n, (-1)^k*C(n-1, k)*(Pell(2n-2k)-Pell(2n-2k-1))}, n>0, where Pell(n) = A000129(n). - _Paul Barry_, Jun 07 2005
%F a(n+1) = ((3+sqrt18)(2+sqrt8)^n+(3-sqrt18)(2-sqrt8)^n)/6. - Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009, index corrected Jul 11 2012
%F a(n) = 2^(n-1) * A001333(n), n>0. - _Ralf Stephan_, Dec 02 2010
%F a(n) = A057087(n-1) + 2*A057087(n-2). - _R. J. Mathar_, Jul 11 2012
%t CoefficientList[Series[x*(1+2*x)/(1-4*x-4*x^2),{x,0,40}],x] (* _Vincenzo Librandi_, Jun 26 2012 *)
%o (Magma) I:=[0, 1, 6]; [n le 3 select I[n] else 4*Self(n-1)+4*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jun 26 2012
%Y Cf. A057087, A001108, A002315, A096980.
%K easy,nonn
%O 0,3
%A _Creighton Dement_, Jun 01 2005