login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squarefree integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y odd.
5

%I #33 Sep 04 2021 21:35:53

%S 5,13,21,29,53,61,69,77,85,93,109,133,149,157,165,173,181,205,213,221,

%T 229,237,253,277,285,293,301,309,317,341,357,365,397,413,421,429,437,

%U 445,453,461,469,493,501,509,517,533,541,565,581,589,597,613,629,645

%N Squarefree integers m congruent to 5 modulo 8 such that the minimal solution of the Pell equation x^2 - m*y^2 = +-4 has both x and y odd.

%C Squarefree integers m for which the fundamental unit of Q(sqrt(m)) is of the form (u + v*sqrt(m))/2, where u and v are both odd.

%D E. L. Ince, Cycles of Reduced Ideals in Quadratic Fields, British Association Mathematical Tables, Vol. IV, London, 1934.

%D H. C. Williams, Eisenstein's problem and continued fractions, Utilitas Math. 37 (1990) 145-157.

%H Robert G. Wilson v, <a href="/A107997/b107997.txt">Table of n, a(n) for n = 1..1000</a> (first 161 terms from Charles R Greathouse IV)

%H F. Arndt, <a href="https://www.digitale-sammlungen.de/en/view/bsb10593875?page=524,525">Beiträge zur Theorie der quadratischen Formen</a>, Archiv der Mathematik und Physik 15 (1850) 467-478.

%H A. Cayley, <a href="https://www.digizeitschriften.de/dms/img/?PID=GDZPPN002149834">Note sur l'équation x^2 - D*y^2 = +-4, D=5 (mod 8)</a>, J. Reine Angew. Math. 53 (1857) 369-371.

%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Class number theory</a>

%H Steven R. Finch, <a href="/A000924/a000924.pdf">Class number theory</a> [Cached copy, with permission of the author]

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FundamentalUnit.html">Fundamental unit</a>

%t fQ[n_] := Block[{nffu = NumberFieldFundamentalUnits@ Sqrt@ n}, SquareFreeQ@ n && Denominator[ nffu[[1, 2, 2]]] > 1]; Select[ 8Range@ 81 - 3, fQ] (* _Robert G. Wilson v_, Dec 22 2014 *)

%Y Cf. A107998.

%K nonn

%O 1,1

%A _Steven Finch_, Jun 13 2005