login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107965
a(n) = (n+1)(n+2)^2*(n+3)^2*(n+4)(11n^4 + 110n^3 + 439n^2 + 820n + 600)/86400.
2
1, 33, 421, 3171, 16954, 71148, 249228, 758934, 2066559, 5135845, 11828817, 25546885, 52216164, 101751664, 190171248, 342572508, 597234429, 1011161361, 1667449861, 2684929863, 4230610846, 6535551660, 9914869900, 14792713650, 21733135515, 31477936581
OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 229).
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: -(x^6+22*x^5+113*x^4+190*x^3+113*x^2+22*x+1) / (x-1)^11. - Colin Barker, Aug 13 2013
MAPLE
a:=n->(1/86400)*(n+1)*(n+2)^2*(n+3)^2*(n+4)*(11*n^4+110*n^3+439*n^2+820*n+600): seq(a(n), n=0..26);
CROSSREFS
Sequence in context: A202256 A324950 A252925 * A220591 A296839 A296988
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 12 2005
STATUS
approved