|
|
A107955
|
|
Number of chains in the power set lattice or the number of fuzzy subsets of an (n+5)-element set X_(n+5) with specification n elements of one kind, 4 elements of another and 1 of yet another kind.
|
|
0
|
|
|
191, 1471, 7551, 31871, 119231, 410303, 1327103, 4090623, 12130303, 34842623, 97435647, 266313727, 713637887, 1879523327, 4875091967, 12474187775, 31531728895, 78832992255, 195135799295, 478649778175, 1164351373311
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
This sequence is another example, together with A107953 and A107954, of a triple sequence A(n,m,l) with n a nonnegative integer, m = 4 and l = 1.
|
|
REFERENCES
|
Venkat Murali, On the enumeration of fuzzy subsets of an (n+5)-element set X_(n+5) of specification n^1 4^1 1, Rhodes University JRC-Abstract-Report, In Preparation, 15 pages 2005.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (2^(n+1))*(1/24)*(n^5 + 36*n^4 + 431*n^3 + 2088*n^2 + 3972*n + 2304) - 1,
G.f.: (320*x^5-1360*x^4+2400*x^3-2180*x^2+1012*x-191) / ((x-1)*(2*x-1)^6). [Colin Barker, Dec 10 2012]
|
|
EXAMPLE
|
a(3) = (2^(3+1))*(1/24)*(3^5 + 36 * 3^4 + 431 * 3^3 + 2088 * 3^2 + 3972 * 3 + 2304) - 1 = 31871. This is the number of chains in the power set lattice (which is also the number of fuzzy subsets) of X_(n+5).
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Venkat Murali (v.murali(AT)ru.ac.za), Jun 01 2005
|
|
STATUS
|
approved
|
|
|
|