|
|
A107924
|
|
Even numbers n such that n^2 is an arithmetic number.
|
|
5
|
|
|
296, 536, 632, 872, 1208, 1304, 1544, 2072, 2216, 2648, 2984, 3584, 3656, 3752, 3848, 3896, 3904, 3992, 4328, 4424, 4568, 4904, 5624, 5672, 5912, 6008, 6104, 6584, 6968, 7016, 7256, 7352, 7928, 8216, 8264, 8456, 8696, 8896, 8936, 9032, 9128, 9176, 9368
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Odd numbers with this property are much more numerous, cf. A107925, A003601 (arithmetic number).
|
|
LINKS
|
|
|
MAPLE
|
isA107924 := proc(n)
if type(n, 'even') then
dvs := numtheory[divisors](n^2) ;
add(d, d=dvs)/nops(dvs) ;
if type(%, 'integer') then
true;
else
false;
end if;
else
false;
end if;
end proc:
n := 1 :
for k from 2 to 100000 do
if isA107924(k) then
printf("%d %d\n", n, k) ;
n := n+1 ;
end if;
|
|
MATHEMATICA
|
Select[Range[2, 10000, 2], Mod[DivisorSigma[1, #^2], DivisorSigma[0, #^2]]==0&]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|