login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular matrix T, read by rows, that satisfies: [T^-k](n,k) = -T(n,k-1) for n >= k > 0, or, equivalently, (column k of T^-k) = -SHIFT_LEFT(column k-1 of T) when zeros above the diagonal are ignored. Also, matrix inverse of triangle A107876.
1

%I #16 Jun 11 2024 01:27:25

%S 1,-1,1,0,-1,1,0,-1,-1,1,0,-3,-2,-1,1,0,-15,-9,-3,-1,1,0,-106,-61,-18,

%T -4,-1,1,0,-975,-550,-154,-30,-5,-1,1,0,-11100,-6195,-1689,-310,-45,

%U -6,-1,1,0,-151148,-83837,-22518,-4005,-545,-63,-7,-1,1,0,-2401365,-1326923,-353211,-61686,-8105,-875,-84,-8,-1,1

%N Triangular matrix T, read by rows, that satisfies: [T^-k](n,k) = -T(n,k-1) for n >= k > 0, or, equivalently, (column k of T^-k) = -SHIFT_LEFT(column k-1 of T) when zeros above the diagonal are ignored. Also, matrix inverse of triangle A107876.

%C SHIFT_LEFT(column 1) = -A107878.

%C SHIFT_LEFT(column 2) = -A107883.

%C SHIFT_LEFT(column 3) = -A107888.

%F G.f. for column k: 1 = Sum_{j>=0} T(k+j, k)*x^j*(1-x)^(-1 + (k+j)*(k+j-1)/2 - k*(k-1)/2).

%e G.f. for column 1:

%e 1 = T(1,1)*(1-x)^-1 + T(2,1)*x*(1-x)^0 + T(3,1)*x^2*(1-x)^2 + T(4,1)*x^3*(1-x)^5 + T(5,1)*x^4*(1-x)^9 + T(6,1)*x^5*(1-x)^14 + ...

%e = 1*(1-x)^-1 - 1*x*(1-x)^0 - 1*x^2*(1-x)^2 - 3*x^3*(1-x)^5 - 15*x^4*(1-x)^9 - 106*x^5*(1-x)^14 - 975*x^6*(1-x)^20 + ...

%e G.f. for column 2:

%e 1 = T(2,2)*(1-x)^-1 + T(3,2)*x*(1-x)^1 + T(4,2)*x^2*(1-x)^4 + T(5,2)*x^3*(1-x)^8 + T(6,2)*x^4*(1-x)^13 + T(7,2)*x^5*(1-x)^19 + ...

%e = 1*(1-x)^-1 - 1*x*(1-x)^1 - 2*x^2*(1-x)^4 - 9*x^3*(1-x)^8 - 61*x^4*(1-x)^13 - 550*x^5*(1-x)^19 - 6195*x^6*(1-x)^26 + ...

%e Triangle begins:

%e 1;

%e -1, 1;

%e 0, -1, 1;

%e 0, -1, -1, 1;

%e 0, -3, -2, -1, 1;

%e 0, -15, -9, -3, -1, 1;

%e 0, -106, -61, -18, -4, -1, 1;

%e 0, -975, -550, -154, -30, -5, -1, 1;

%e 0, -11100, -6195, -1689, -310, -45, -6, -1, 1;

%e ...

%t max = 10;

%t A107862 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n - k], n - k], {n, 0, max}, {k, 0, max}];

%t A107867 = Table[Binomial[If[n < k, 0, n*(n-1)/2-k*(k-1)/2 + n-k+1], n - k], {n, 0, max}, {k, 0, max}];

%t T = Inverse[Inverse[A107862].A107867];

%t Table[T[[n + 1, k + 1]], {n, 0, max}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 31 2024 *)

%o (PARI) {T(n,k)=polcoeff(1-sum(j=0,n-k-1, T(j+k,k)*x^j*(1-x+x*O(x^n))^(-1+(k+j)*(k+j-1)/2-k*(k-1)/2)),n-k)}

%Y Cf. A107876, A107880, A107884.

%K sign,tabl

%O 0,12

%A _Paul D. Hanna_, Jun 05 2005