Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Nov 26 2016 18:19:15
%S 1,2,5,19,104,766,7197,82910,1136923,18141867,330940109,6803936050,
%T 155839142185,3938383850350,108934529005948,3275059508166297,
%U 106388204134734785,3714826559490125850,138796913898027894261
%N Column 1 of triangle A107880.
%F G.f.: 1 = Sum_{k>=0} a(k)*x^k*(1-x)^(2 + k*(k+1)/2).
%F From _Benedict W. J. Irwin_, Nov 26 2016: (Start)
%F Conjecture: a(n) can be expressed with a series of nested sums,
%F a(2) = Sum_{i=1..2} i+1,
%F a(3) = Sum_{i=1..2}Sum_{j=1..i+1} j+2,
%F a(4) = Sum_{i=1..2}Sum_{j=1..i+1}Sum_{k=1..j+2} k+3,
%F a(5) = Sum_{i=1..2}Sum_{j=1..i+1}Sum_{k=1..j+2}Sum_{l=1..k+3} l+4. (End)
%e G.f. = 1 + 2*x + 5*x^2 + 19*x^3 + 104*x^4 + 766*x^5 + 7197*x^6 + 82910*x^7 + ...
%e 1 = 1*(1-x)^2 + 2*x*(1-x)^3 + 5*x^2*(1-x)^5 +
%e 19*x^3*(1-x)^8 + 104*x^4*(1-x)^12 + 766*x^5*(1-x)^17 +...
%t a[ n_, k_: 2, j_: 0] := If[ n < 1, Boole[n >= 0], a[ n, k, j] = Sum[ a[ n - 1, i, j + 1], {i, k + j}]]; (* _Michael Somos_, Nov 26 2016 *)
%o (PARI) {a(n)=polcoeff(1-sum(k=0,n-1,a(k)*x^k*(1-x+x*O(x^n))^(2+k*(k+1)/2)),n)}
%Y Cf. A107880, A107881, A107883.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jun 04 2005