login
a(n) = b(k), where b(k) = Fibonacci(n-1) and k = floor( n*(1+sqrt(5))/2 ).
1

%I #29 Jul 20 2024 20:05:54

%S 1,1,2,3,7,11,28,45,117,189,494,799,2091,3383,8856,14329,37513,60697,

%T 158906,257115,673135,1089155,2851444,4613733,12078909,19544085,

%U 51167078,82790071,216747219,350704367,918155952,1485607537,3889371025

%N a(n) = b(k), where b(k) = Fibonacci(n-1) and k = floor( n*(1+sqrt(5))/2 ).

%C Limit_{n -> oo} a(n+1)/a(n) does not exist.

%C Apparently the same as A107857. - _Georg Fischer_, Nov 02 2018

%t F[1] = 0; F[2] = 1; F[n__] := F[n] = F[n - 1] + F[n - 2]

%t Table[F[ Floor[(Sqrt[5] + 1)*n/2]], {n, 1, 50}] (* F[n] are the Fibonacci numbers, A000045, with offset 1 *)

%Y Cf. A000045, A107857, A185381.

%K nonn

%O 1,3

%A _Roger L. Bagula_, Jun 12 2005

%E Edited by _N. J. A. Sloane_, May 06 2012