Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #68 Sep 30 2024 03:24:21
%S 1,1,2,4,6,10,17,25,38,59,86,125,184,260,369,524,726,1005,1391,1894,
%T 2576,3493,4687,6272,8373,11090,14647,19294,25265,32991,42974,55705,
%U 72025,92895,119349,152965,195592,249280,316991,402215,508932,642598,809739,1017850,1276959,1599015,1997943,2491874,3102477,3855165,4782408,5922954
%N G.f.: Product_{j>=1} Product_{i>=1} (1 + x^(i*j)).
%C From _Gus Wiseman_, Sep 13 2022: (Start)
%C Also the number of multiset partitions of integer partitions of n into intervals, where an interval is a set of positive integers with all differences of adjacent elements equal to 1. For example, the a(1) = 1 through a(4) = 6 multiset partitions are:
%C {{1}} {{2}} {{3}} {{4}}
%C {{1},{1}} {{1,2}} {{1},{3}}
%C {{1},{2}} {{2},{2}}
%C {{1},{1},{1}} {{1},{1,2}}
%C {{1},{1},{2}}
%C {{1},{1},{1},{1}}
%C Intervals are counted by A001227, ranked by A073485.
%C The initial version is A007294.
%C The strict version is A327731.
%C The version for gapless multisets instead of intervals is A356941.
%C The case of strict partitions is A356957.
%C Also the number of multiset partitions of integer partitions of n into distinct constant blocks. For example, the a(1) = 1 through a(4) = 6 multiset partitions are:
%C {{1}} {{2}} {{3}} {{4}}
%C {{1,1}} {{1,1,1}} {{2,2}}
%C {{1},{2}} {{1},{3}}
%C {{1},{1,1}} {{1,1,1,1}}
%C {{2},{1,1}}
%C {{1},{1,1,1}}
%C Constant multisets are counted by A000005, ranked by A000961.
%C The non-strict version is A006171.
%C The unlabeled version is A089259.
%C The non-constant block version is A261049.
%C The version for twice-partitions is A279786, factorizations A296131.
%C Also the number of multiset partitions of integer partitions of n into constant blocks of odd length. For example, a(1) = 1 through a(4) = 6 multiset partitions are:
%C {{1}} {{2}} {{3}} {{4}}
%C {{1},{1}} {{1,1,1}} {{1},{3}}
%C {{1},{2}} {{2},{2}}
%C {{1},{1},{1}} {{1},{1,1,1}}
%C {{1},{1},{2}}
%C {{1},{1},{1},{1}}
%C The strict version is A327731 (also).
%C (End)
%H Vaclav Kotesovec, <a href="/A107742/b107742.txt">Table of n, a(n) for n = 0..10000</a>
%H Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, <a href="https://doi.org/10.1007/s44007-024-00134-w">A unified treatment of families of partition functions</a>, La Matematica (2024). Preprint available as <a href="https://arxiv.org/abs/2303.02240">arXiv:2303.02240</a> [math.CO], 2023.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F Euler transform of A001227.
%F Weigh transform of A000005.
%F G.f. satisfies: log(A(x)) = Sum_{n>=1} A109386(n)/n*x^n, where A109386(n) = Sum_{d|n} d*Sum_{m|d} (m mod 2). - _Paul D. Hanna_, Jun 26 2005
%F G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1-x^(2n)) /n ). - _Paul D. Hanna_, Mar 28 2009
%F G.f.: Product_{n>=1} Q(x^n) where Q(x) is the g.f. of A000009. - _Joerg Arndt_, Feb 27 2014
%F a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A109386(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Jun 04 2017
%F Conjecture: log(a(n)) ~ Pi*sqrt(n*log(n)/6). - _Vaclav Kotesovec_, Aug 29 2018
%t nmax = 50; CoefficientList[Series[Product[(1+x^(i*j)), {i, 1, nmax}, {j, 1, nmax/i}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jan 04 2017 *)
%t nmax = 50; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 23 2018 *)
%t nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* _Vaclav Kotesovec_, Aug 28 2018 *)
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t chQ[y_]:=Length[y]<=1||Union[Differences[y]]=={1};
%t Table[Length[Select[Join@@mps/@IntegerPartitions[n],And@@chQ/@#&]],{n,0,5}] (* _Gus Wiseman_, Sep 13 2022 *)
%o (PARI) a(n)=polcoeff(prod(k=1,n,prod(j=1,n\k,1+x^(j*k)+x*O(x^n))),n) /* _Paul D. Hanna_ */
%o (PARI) N=66; x='x+O('x^N); gf=1/prod(j=0,N, eta(x^(2*j+1))); gf=prod(j=1,N,(1+x^j)^numdiv(j)); Vec(gf) /* _Joerg Arndt_, May 03 2008 */
%o (PARI) {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^(2*m)+x*O(x^n))/m)),n))} /* _Paul D. Hanna_, Mar 28 2009 */
%Y Cf. A006171, A109386, A219554, A280473, A280486, A288007.
%Y Product_{k>=1} (1 + x^k)^sigma_m(k): this sequence (m=0), A192065 (m=1), A288414 (m=2), A288415 (m=3), A301548 (m=4), A301549 (m=5), A301550 (m=6), A301551 (m=7), A301552 (m=8).
%Y A000041 counts integer partitions, strict A000009.
%Y A000110 counts set partitions.
%Y A072233 counts partitions by sum and length.
%Y Cf. A001055, A001970, A011782, A055887, A061260, A270995, A279784, A294617, A304969.
%K easy,nonn
%O 0,3
%A _Vladeta Jovovic_, Jun 11 2005
%E More terms from _Paul D. Hanna_, Jun 26 2005