OFFSET
0,2
COMMENTS
FORMULA
T(n, k) = 3*(k+1)*T(n, k+1) + Sum_{j=1..n-k-1} T(j, 0)*T(n, j+k+1) for n>k>=0, with T(n, n) = 1 for n>=0. T(n, 0) = A107716(n+1) for n>=0.
EXAMPLE
SHIFT_LEFT(column 0 of T^(p-1/3)) = (3*p-1)*(column p of T):
SHIFT_LEFT(column 0 of T^(-1/3)) = -1*(column 0 of T);
SHIFT_LEFT(column 0 of T^(2/3)) = 2*(column 1 of T);
SHIFT_LEFT(column 0 of T^(5/3)) = 5*(column 2 of T).
Triangle begins:
1;
3,1;
21,6,1;
219,57,9,1;
2973,723,111,12,1;
49323,11361,1713,183,15,1;
964173,212151,31575,3351,273,18,1;
21680571,4584081,675489,71391,5799,381,21,1; ...
Matrix power (2/3), T^(2/3), is A107719 and begins:
1;
2,1;
12,4,1;
114,32,6,1;
1446,364,62,8,1;
22722,5276,854,102,10,1; ...
compare column 0 of T^(2/3) to 2*(column 1 of T).
Matrix inverse cube-root T^(-1/3) is A107727 and begins:
1;
-1,1;
-3,-2,1;
-21,-7,-3,1;
-219,-53,-13,-4,1;
-2973,-583,-115,-21,-5,1; ...
compare column 0 of T^(-1/3) to column 0 of T.
Matrix inverse is A107726 and begins:
1;
-3,1;
-3,-6,1;
-21,-3,-9,1;
-219,-21,-3,-12,1;
-2973,-219,-21,-3,-15,1; ...
compare column 0 of T^(-1) to column 0 of T.
PROG
(PARI) {T(n, k)=if(n<k||k<0, 0, if(n==k, 1, 3*(k+1)*T(n, k+1)+sum(j=1, n-k-1, T(j, 0)*T(n, j+k+1))))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) {T(n, k)=if(n<k||k<0, 0, (matrix(n+1, n+1, m, j, if(m>=j, if(m==j, 1, if(m==j+1, -3*j, -T(m-j-1, 0)))))^-1)[n+1, k+1])}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, May 30 2005
STATUS
approved