login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse INVERT transform of triple factorial numbers (3*n-2)!!! (A007559).
7

%I #29 May 01 2019 07:52:28

%S 1,3,21,219,2973,49323,964173,21680571,551173053,15633866379,

%T 489583062381,16780438408539,624935780160285,25131869565110571,

%U 1085528359404039117,50124679063548821499,2464153823558024331645,128500643820213560377803,7085182933810282490250285

%N Inverse INVERT transform of triple factorial numbers (3*n-2)!!! (A007559).

%C Column 0 of triangle A107717.

%H Alois P. Heinz, <a href="/A107716/b107716.txt">Table of n, a(n) for n = 0..380</a>

%F G.f.: A(x) = 1 - 1/[1 + Sum_{n>=1} (3*n-2)!!! * x^n ] where (3*n-2)!!! = Product_{k=0..n-1} (3*k+1).

%F a(n) = Sum_{k, 0<=k<=n} A089949(n, k)*3^k . - _Philippe Deléham_, Aug 15 2005

%F G.f.: (1 - Q(0))/x where Q(k) = 1 - x*(3*k+1)/(1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Mar 20 2013

%F G.f.: 1/x - 2 - 2/x/G(0), where G(k)= 1 + 1/(1 - x*(3*k+3)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 25 2013

%F From _Peter Bala_, May 23 2017: (Start)

%F G.f. A(x) = 1/(1 + x - 4*x/(1 + 4*x - 7*x/(1 + 7*x - 10*x/(1 + 10*x - ...)))).

%F A(x) = 1/(1 + x - 4*x/(1 - 3*x/(1 - 7*x/(1 - 6*x/(1 - 10*x/(1 - 9*x - ...)))))). (End)

%e The triple factorials begin: {1,4,28,280,3640,58240,...}; thus the inverse INVERT transform of the triple factorials can be calculated by the g.f.s:

%e 1/(1 + x + 4*x^2 + 28*x^3 + 280*x^4 + 3640*x^5 + 58240*x^6 +...) = (1 - x - 3*x^2 - 21*x^3 - 219*x^4 - 2973*x^5 - 49323*x^6 -...).

%p b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*(3*n+1)) end:

%p a:= proc(n) a(n):= -`if`(n<0, 1, add(a(n-i-1)*b(i), i=0..n)) end:

%p seq(a(n), n=0..20); # _Alois P. Heinz_, May 23 2017

%t m = 20; f3[n_] := Product[3k+1, {k, 0, n-1}]; A[x_] = 1-1/(1+Sum[f3[n] x^n, {n, 1, m}]); CoefficientList[A[x] + O[x]^m, x] // Rest (* _Jean-François Alcover_, May 01 2019 *)

%o (PARI) a(n)=polcoeff(1-(1+sum(k=1,n+1,prod(j=0,k-1,3*j+1)*x^k)+x^2*O(x^n))^-1,n+1)

%Y Cf. A007559, A000698, A107717.

%K nonn,easy

%O 0,2

%A _Paul D. Hanna_, May 23 2005