Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Feb 28 2024 08:10:30
%S 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,2,2,1,1,1,1,5,10,5,1,1,1,1,3,5,5,3,
%T 1,1,1,1,7,7,35,7,7,1,1,1,1,4,28,14,14,28,4,1,1,1,1,9,12,42,126,42,12,
%U 9,1,1,1,1,5,15,30,42,42,30,15,5,1,1,1,1,11,55,165,66,462,66,165,55,11,1,1
%N Triangle read by rows: T(0,0)=1, T(n,m) = binomial(n,m) * gcd(n,m)/n.
%C T(0,0) is an indeterminate, but 1 seems a logical value to assign it. T(n,0) = T(n,1) = T(n,n-1) = T(n,n) = 1.
%C T(2n,n) = A001700(n-1) (n>=1). - _Emeric Deutsch_, Jun 13 2005
%H Reinhard Zumkeller, <a href="/A107711/b107711.txt">Rows n = 1..125 of triangle, flattened</a>
%H Wolfdieter Lang, <a href="http://arxiv.org/abs/1404.2710">On Collatz' Words, Sequences and Trees</a>, arXiv:1404.2710 [math.NT], 2014 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lang/lang6.html">J. Int. Seq. 17 (2014) # 14.11.7</a>.
%F From _Wolfdieter Lang_, Feb 28 2014 (Start)
%F T(n, m) = T(n-1,m)*(n-1)*gcd(n,m)/((n-m)*gcd(n-1,m)), n > m >= 1, T(n, 0) = 1, T(n, n) = 1, otherwise 0.
%F T(n, m) = binomial(n-1,m-1)*gcd(n,m)/m for n >= m >= 1, T(n,0) = 1, otherwise 0 (from iteration of the preceding recurrence).
%F T(n, m) = T(n-1, m-1)*(n-1)*gcd(n,m)/(m*gcd(n-1,m-1)) for n >= m >= 2, T(n, 0) = 1, T(n, 1) = 0, otherwise 0 (from the preceding formula).
%F T(2*n, n) = A001700(n-1) (n>=1) (see the _Emeric Deutsch_ comment above), T(2*n, n-1) = A234040(n), T(2*n+1,n) = A000108(n), n >= 0 (Catalan numbers).
%F Column sequences: T(n+2, 2) = A026741(n+1), T(n+3, 3) = A234041(n), T(n+4, 4) = A208950(n+2), T(n+5, 5) = A234042, n >= 0. (End)
%e T(6,2)=5 because binomial(6,2)*gcd(6,2)/6 = 15*2/6 = 5.
%e The triangle T(n,m) begins:
%e n\m 0 1 2 3 4 5 6 7 8 9 10...
%e 0: 1
%e 1: 1 1
%e 2: 1 1 1
%e 3: 1 1 1 1
%e 4: 1 1 3 1 1
%e 5: 1 1 2 2 1 1
%e 6: 1 1 5 10 5 1 1
%e 7: 1 1 3 5 5 3 1 1
%e 8: 1 1 7 7 35 7 7 1 1
%e 9: 1 1 4 28 14 14 28 4 1 1
%e 10: 1 1 9 12 42 126 42 12 9 1 1
%e n\m 0 1 2 3 4 5 6 7 8 9 10...
%e ... reformatted - _Wolfdieter Lang_, Feb 23 2014
%p a:=proc(n,k) if n=0 and k=0 then 1 elif k<=n then binomial(n,k)*gcd(n,k)/n else 0 fi end: for n from 0 to 13 do seq(a(n,k),k=0..n) od; # yields sequence in triangular form. - _Emeric Deutsch_, Jun 13 2005
%t T[0, 0] = 1; T[n_, m_] := Binomial[n, m] * GCD[n, m]/n;
%t Table[T[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 16 2017 *)
%o (Haskell)
%o a107711 n k = a107711_tabl !! n !! k
%o a107711_row n = a107711_tabl !! n
%o a107711_tabl = [1] : zipWith (map . flip div) [1..]
%o (tail $ zipWith (zipWith (*)) a007318_tabl a109004_tabl)
%o -- _Reinhard Zumkeller_, Feb 28 2014
%Y Row sums A159554.
%Y Cf. A007318, A001700, A000108, A050169, A234040, A026741, A234042.
%Y Cf. A109004.
%K tabl,nonn
%O 0,13
%A _Leroy Quet_, Jun 10 2005
%E More terms from _Emeric Deutsch_, Jun 13 2005