login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Quadratic recurrence a(n)=2a(n-1)^2+a(n-2), a(0)=a(1)=1.
0

%I #5 Jan 19 2015 15:37:13

%S 1,1,3,19,725,1051269,2210333021447,9771144131398048324998887,

%T 190950515273109040540985906104397627141067435498985,

%U 72924198566131697919005645563941249133599421947333610081098812005030529313728193495031984760197059337

%N Quadratic recurrence a(n)=2a(n-1)^2+a(n-2), a(0)=a(1)=1.

%F a(n) ~ 1/2 * c^(2^n), where c = 1.5761071725603835806427292143532632951057735784139134374711... . - _Vaclav Kotesovec_, Jan 19 2015

%t RecurrenceTable[{a[n]==2*a[n-1]^2+a[n-2],a[0]==1,a[1]==1},a,{n,0,10}] (* _Vaclav Kotesovec_, Jan 19 2015 *)

%o (PARI) a(n)=if(n<0, -a(-1-n), if(n<2, 1, 2*a(n-1)^2+a(n-2)))

%K nonn

%O 0,3

%A _Michael Somos_, May 22 2005