login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107700
G.f. A(x) satisfies: A(A(x)) = x + 2*A(x)^2.
4
1, 1, 1, 0, -2, 0, 13, 0, -145, 0, 2328, 0, -49784, 0, 1358965, 0, -46076544, 0, 1902202515, 0, -94104681660, 0, 5503867176832, 0, -376096374571125, 0, 29714871818774044, 0, -2689473418781240320, 0, 276562260699626541509, 0, -32073434441440654231749, 0
OFFSET
1,5
COMMENTS
Inspired by peculiar functional equations suggested by Michael Somos. Unexpectedly, the even-indexed terms are all zeros after index 2; see A107699 for odd-indexed terms. The self-COMPOSE equals A107701.
FORMULA
G.f. satisfies: A(-A(-x)) = x.
G.f. satisfies: A( A(x) - 2*x^2 ) = x. [Paul D. Hanna, Aug 20 2008]
a(n)=T(n,1), T(n,m)=sum(j=max(2*m-n,0)..m-1,binomial(m,j)*2^(m-j-1) *T(n-j,2*(m-j)))-1/2*sum(i=m+1..n-1, T(n,i)*T(i,m)), n>m, T(n,n)=1. [Vladimir Kruchinin, Mar 12 2012]
MATHEMATICA
T[n_, n_] = 1; T[n_, m_] := T[n, m] = Sum[Binomial[m, j]*2^(m-j-1)*T[n-j, 2*(m-j)], {j, Max[2*m-n, 0], m-1}] - 1/2*Sum[T[n, i]*T[i, m], {i, m+1, n-1}]; Table[T[n, 1], {n, 1, 34}] (* Jean-François Alcover, Mar 03 2014, after Vladimir Kruchinin *)
PROG
(PARI) {a(n) = local(A, B, F); A=x+x^2+x*O(x^n); if(n<1, 0, for(i=0, n, F=x+2*A^2; B=serreverse(A); A=(A+subst(B, x, F))/2); polcoeff(A, n, x))}
(PARI) {a(n) = my(A); if( n<0, 0, A = x + O(x^2); for(k=2, n, A = truncate(A) + x * O(x^k); A += (x + A^2 - subst(A, x, A))/2); polcoeff(A, n) * 2^(n-1))}; /* Michael Somos, Dec 15 2017 */
(Maxima)
T(n, m):=if n=m then 1 else sum(binomial(m, j)*2^(m-j-1)*T(n-j, 2*(m-j)), j, max(2*m-n, 0), m-1)-1/2*sum(T(n, i)*T(i, m), i, m+1, n-1);
makelist(T(n, 1), n, 1, 9); /* Vladimir Kruchinin, Mar 12 2012 */
CROSSREFS
Sequence in context: A058803 A193202 A294463 * A274107 A122688 A293936
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 21 2005
STATUS
approved