login
A107380
Numbers k such that (k + prime(k)) and (k+1 + prime(k+1)) are divisible by 11.
1
127, 193, 431, 705, 795, 798, 1282, 1601, 1635, 1659, 1784, 1862, 2245, 2257, 2301, 2424, 2532, 2635, 2776, 2830, 3007, 3022, 3076, 3089, 3125, 3193, 3296, 3307, 3325, 3349, 3546, 3609, 3649, 3741, 3895, 3932, 3940, 3958, 4065, 4093, 4153, 4318, 4489
OFFSET
1,1
LINKS
MAPLE
R:= NULL: count:= 0: p:= 1: state:= 0:
for n from 1 while count < 100 do
p:= nextprime(p);
if n+p mod 11 = 0 then
if state = 1 then count:= count+1; R:= R, n-1 fi;
state:= 1
else
state:= 0
fi;
od:
R; # Robert Israel, Oct 02 2022
MATHEMATICA
Select[Range[5000], Mod[Prime[ # ]+#, 11]+Mod[Prime[ #+1]+#+1, 11]==0&]
Flatten[ Position[Partition[Table[n+Prime[n], {n, 5000}], 2, 1], _?(Mod[ First[ #], 11]+ Mod[Last[#], 11]==0&), {1}, Heads->False]] (* Harvey P. Dale, Mar 12 2013 *)
CROSSREFS
Sequence in context: A023689 A095284 A127579 * A282793 A180539 A195377
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Jun 10 2005
STATUS
approved