login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Real root cubic substitution with characteristic polynomial:x^3-2*x^2-3*x+2.
0

%I #6 Jul 10 2020 12:27:57

%S 1,3,3,1,1,2,1,2,1,3,3,1,1,3,3,1,3,1,3,3,1,3,1,3,3,1,1,2,1,2,1,3,3,1,

%T 1,3,3,1,1,2,1,2,1,3,3,1,1,2,1,3,3,1,1,2,1,2,1,3,3,1,1,2,1,3,3,1,1,2,

%U 1,2,1,3,3,1,1,3,3,1,3,1,3,3,1,3,1,3,3,1,1,2,1,2,1,3,3,1,1,3,3,1,1,2,1,2,1

%N Real root cubic substitution with characteristic polynomial:x^3-2*x^2-3*x+2.

%C Complex inverse of this polynomial is a real root Pisot

%F 1->{1, 3, 3, 1}, 2->{3}, 3->{1.2}

%t s[1] = {1, 3, 3, 1}; s[2] = {3}; s[3] = {1, 2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[5]

%K nonn,uned

%O 0,2

%A _Roger L. Bagula_, May 22 2005