Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 02 2015 20:59:37
%S 0,0,0,0,0,0,0,1,2,6,22,86,342,1366,5462,21846,86871,345952,1378208,
%T 5490992,21877296,87163696,347276080,1383600944,5512434480,
%U 21962292529,87500852554,348615720590,1388934122190,5533708922574,22047074027470
%N Sum of squares of octanacci numbers (Fibonacci 8-step numbers).
%C Primes in this sequence include: a(8) = 2, a(17) = 280927. Semiprimes in this sequence include: a(9) = 6 = 2 * 3, a(10) = 22 = 2 * 11, a(11) = 86 = 2 * 43, a(13) = 1366 = 2 * 683, a(14) = 5462 = 2 * 2731, a(24) = 5512110374 = 2 * 2756055187, a(25) = 21961968423 = 3 * 7320656141, a(36) = 88177707994468342 = 2 * 44088853997234171.
%H Harvey P. Dale, <a href="/A107246/b107246.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a>.
%H <a href="/index/Rec#order_37">Index entries for linear recurrences with constant coefficients</a>, signature (3, 2, 4, 8, 14, 30, 60, 120, -266, -24, -38, -32, 120, -22, -50, -64, 136, 16, 30, 22, -68, 0, 10, 18, -28, 0, -6, -8, 14, 0, 0, -2, 2, 0, 0, 1, -1).
%F a(n) = F_8(0)^2 + F_8(1)^2 + ... F_8(n)^2, where F_8(n) = A079262(n).
%t Accumulate[LinearRecurrence[{1,1,1,1,1,1,1,1},{0,0,0,0,0,0,0,1},40]^2] (* _Harvey P. Dale_, May 25 2014 *)
%t LinearRecurrence[{3, 2, 4, 8, 14, 30, 60, 120, -266, -24, -38, -32, 120, -22, -50, -64, 136, 16, 30, 22, -68, 0, 10, 18, -28, 0, -6, -8, 14, 0, 0, -2, 2, 0, 0, 1, -1},{0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, 345952, 1378208, 5490992, 21877296, 87163696, 347276080, 1383600944, 5512434480, 21962292529, 87500852554, 348615720590, 1388934122190, 5533708922574, 22047074027470, 87838639467470, 349961474550734, 1394295671696334, 5555069815204303, 22132178477202944, 88177707994792448},31] (* _Ray Chandler_, Aug 02 2015 *)
%Y Cf. A079262, A107239-A107245, A107247-A107248.
%K easy,nonn
%O 0,9
%A _Jonathan Vos Post_, May 27 2005
%E Corrected from a(16) on by _R. J. Mathar_, Aug 11 2009