login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1 / Product_{n>=0} (1 - q^(5n+1))*(1 - q^(5n+2))*(1 - q^(5n+4)).
6

%I #12 Jan 07 2021 09:52:37

%S 1,1,2,2,4,4,7,8,12,14,19,23,31,37,48,57,73,86,109,128,159,187,229,

%T 269,326,382,458,535,638,742,879,1019,1200,1388,1625,1875,2185,2514,

%U 2916,3347,3868,4427,5099,5822,6683,7614,8712,9904,11301,12821,14589

%N Expansion of 1 / Product_{n>=0} (1 - q^(5n+1))*(1 - q^(5n+2))*(1 - q^(5n+4)).

%H Vaclav Kotesovec, <a href="/A107235/b107235.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) ~ Pi^(2/5) * exp(Pi*sqrt(2*n/5)) / (Gamma(3/5) * 2^(7/10) * 5^(4/5) * n^(7/10)). - _Vaclav Kotesovec_, Jan 07 2021

%t nmax = 50; CoefficientList[Series[1/Product[(1 - x^(5*k+1))*(1 - x^(5*k+2))*(1 - x^(5*k+4)), {k, 0, nmax/5}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jan 07 2021 *)

%Y Cf. A035959, A107234, A107236, A107237.

%K nonn

%O 0,3

%A _Ralf Stephan_, May 13 2005