%I #18 Feb 10 2017 16:22:13
%S 107,179,401,617,827,883,907,1051,1171,1187,1481,1619,1723,1913,2251,
%T 2297,2417,2459,2531,2657,2699,2731,3089,3347,3529,3539,3593,3691,
%U 3697,3889,3907,4057,4153,4363,4603,4817,5051,5107,5153,5209,5531
%N Primes of the form x^2 + 98y^2.
%C Discriminant = -392. See A107132 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A107215/b107215.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t QuadPrimes2[1, 0, 98, 10000] (* see A106856 *)
%o (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\98), if(isprime(t=w+98*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 10 2017
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005