login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes of the form 2x^2 + 39y^2.
2

%I #20 Sep 08 2022 08:45:18

%S 2,41,47,71,89,137,167,239,281,353,359,383,401,431,449,479,593,617,

%T 743,761,839,863,929,977,983,1097,1103,1151,1217,1289,1319,1367,1409,

%U 1487,1553,1601,1607,1697,1721,1913,2039,2087,2111,2153,2273,2351

%N Primes of the form 2x^2 + 39y^2.

%C Discriminant=-312. See A107132 for more information.

%H Vincenzo Librandi and Ray Chandler, <a href="/A107190/b107190.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F The primes are congruent to {2, 41, 47, 71, 89, 119, 137, 161, 167, 215, 239, 281, 305} (mod 312). - _T. D. Noe_, May 02 2008

%t QuadPrimes2[2, 0, 39, 10000] (* see A106856 *)

%o (Magma) [ p: p in PrimesUpTo(3000) | p mod 312 in {2, 41, 47, 71, 89, 119, 137, 161, 167, 215, 239, 281, 305} ]; // _Vincenzo Librandi_, Jul 28 2012

%o (PARI) list(lim)=my(v=List([2]), s=[41, 47, 71, 89, 119, 137, 161, 167, 215, 239, 281, 305]); forprime(p=41, lim, if(setsearch(s, p%312), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017

%Y Cf. A139827.

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 13 2005