Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #18 Feb 09 2017 17:16:49
%S 53,61,101,173,233,257,277,433,569,677,757,829,857,881,937,953,997,
%T 1013,1049,1093,1193,1277,1297,1301,1361,1381,1429,1433,1693,1733,
%U 1741,1873,1889,1901,1993,2029,2141,2161,2389,2417,2549,2557,2609
%N Primes of the form x^2 + 52y^2.
%C Discriminant = -208. See A107132 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A107160/b107160.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t QuadPrimes2[1, 0, 52, 10000] (* see A106856 *)
%o (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\52), if(isprime(t=w+52*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 09 2017
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005