login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes of the form 3x^2+xy+8y^2, with x and y any integer.
1

%I #20 Aug 05 2014 14:16:30

%S 3,37,53,97,127,167,193,223,257,293,373,523,547,563,677,683,743,787,

%T 797,827,857,863,877,953,1063,1123,1153,1307,1367,1553,1637,1667,1693,

%U 1747,1777,1913,2003,2027,2083,2203,2207,2273,2333,2347,2423,2617

%N Primes of the form 3x^2+xy+8y^2, with x and y any integer.

%C Discriminant=-95.

%H Vincenzo Librandi and Ray Chandler, <a href="/A106996/b106996.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%t Union[QuadPrimes2[3, 1, 8, 10000], QuadPrimes2[3, -1, 8, 10000]] (* see A106856 *)

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 09 2005