Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 May 16 2023 10:52:50
%S 1,1,11,315,17129,1510425,196385475,35327367075,8399994587985,
%T 2550903574364145,963207568455370875,442613044315692124875,
%U 243195136160954426677305,157442856285298191126143625,118607799383105394973766029875,102867257381973743111023517821875
%N Numerators in expansion of (1 - x)^(-1/x) / e.
%D L. Comtet, Analyse Combinatoire, P. U. F., 1970, tome second, p. 140, #12.
%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 293, Problem 11.
%D S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1 . 3 . 1.
%H G. C. Greubel, <a href="/A106827/b106827.txt">Table of n, a(n) for n = 0..201</a>
%F Sum_{n>=0} a(n)/(2n)!*x^n = (1 - x)^(-1/x) / e.
%F a(n) = A055505(n)*(2n)! / A055535(n).
%F a(n) = (-1)^n * Sum_{k=0..n} Stirling1(n+k, k) * !(n-k) * C(2*n, n+k), where !n = A000166(n) is the subfactorial, C(n,k) are binomial coefficients. - _Vladimir Reshetnikov_, Sep 23 2016
%F a(n) = (2*n)! * coefficients of Product_{j >= 2} exp(x^(j-1)/j). - _G. C. Greubel_, Sep 14 2021
%e G.f. = 1 + 1*x/2! + 11*x^2/4! + 315*x^3/6! + 17129*x^4/8! + 503475*x^5/10! + ...
%t Table[(-1)^n Sum[StirlingS1[n+k, k] Subfactorial[n-k] Binomial[2n, n+k], {k, 0, n}], {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 23 2016 *)
%t With[{m=30}, CoefficientList[Series[(1-x)^(-1/x)/E, {x,0,m}], x]*(2*Range[0,m])!] (* _G. C. Greubel_, Sep 14 2021 *)
%o (Magma) m:=31; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&*[Exp(x^(j-1)/j): j in [2..40]]) )); [Factorial(2*n-2)*b[n]: n in [1..m]]; // _G. C. Greubel_, Sep 14 2021
%o (Sage)
%o def A_list(prec):
%o P.<x> = PowerSeriesRing(QQ, prec)
%o return P( product(exp(x^(j-1)/j) for j in (2..41)) ).list()
%o A=A_list(40)
%o [factorial(2*n)*A[n] for n in (0..31)] # _G. C. Greubel_, Sep 14 2021
%Y Cf. A055505, A055535.
%K nonn,frac
%O 0,3
%A _Philippe Deléham_, May 21 2005
%E a(5) corrected by _G. C. Greubel_, Sep 14 2021