login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Trajectory of 1 under the morphism 1->13, 2->13223, 3->1323.
1

%I #24 Dec 04 2018 11:02:48

%S 1,3,1,3,2,3,1,3,1,3,2,3,1,3,2,2,3,1,3,2,3,1,3,1,3,2,3,1,3,1,3,2,3,1,

%T 3,2,2,3,1,3,2,3,1,3,1,3,2,3,1,3,2,2,3,1,3,2,2,3,1,3,2,3,1,3,1,3,2,3,

%U 1,3,2,2,3,1,3,2,3,1,3,1,3,2,3,1,3,1,3,2,3,1,3,2,2,3,1,3,2,3,1,3,1,3,2,3,1

%N Trajectory of 1 under the morphism 1->13, 2->13223, 3->1323.

%C Only from the 13th term on, this differs from the limit sequence of { 1 -> 131, 2 -> 212, 3 -> 323 } = absolute values of A229215. - _M. F. Hasler_, Aug 06 2015

%H J. M. Dumont and A. Thomas, <a href="https://doi.org/10.1016/0022-314X(91)90054-F">Digital sum problems and substitutions on a finite alphabet</a>, J. Number Theory, 39 (1991), 351-366.

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%p S:={1=[1,3],2=[1,3,2,2,3],3=[1,3,2,3]}:subs(S,1):subs(S,%):subs(S,%):subs(S,%):subs(S,%); # all brackets have to be removed. - _Emeric Deutsch_, simplified by _M. F. Hasler_, Aug 06 2015

%p S:={1=(1,3),2=(1,3,2,2,3),3=(1,3,2,3)}: (curry(subs,S)@@6)([1]); # _Robert Israel_, Aug 06 2015

%t Nest[ Flatten[ # /. {1 -> {1, 3}, 2 -> {1, 3, 2, 2, 3}, 3 -> {1, 3, 2, 3}}] &, {1}, 5] (* _Robert G. Wilson v_, Jun 20 2005 *)

%o (PARI) A106824(n,a=[1],S=[[1,3],[1,3,2,2,3],[1,3,2,3]])={while(#a<n,a=concat(apply(i->S[i],a)));a} \\ _M. F. Hasler_, Aug 06 2015

%Y Cf. A229215.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, May 20 2005

%E More terms from _Emeric Deutsch_, May 30 2005