login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: g.f. for row r is Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-2).
2

%I #9 Sep 18 2021 03:52:46

%S 1,1,1,0,1,1,1,1,0,0,0,1,1,2,2,2,1,1,0,0,0,0,0,0,1,1,2,3,3,3,3,2,1,1,

%T 0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,

%U 0,0,0,0,1,1,2,3,4,5,6,6,6,6,5,4,3,2,1,1

%N Triangle read by rows: g.f. for row r is Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-2).

%D See A008968 for references.

%H G. C. Greubel, <a href="/A106823/b106823.txt">Rows n = 0..25 of the irregular triangle, flattened</a>

%e Initial rows are:

%e [1]

%e [1]

%e [1]

%e [0, 1, 1, 1, 1]

%e [0, 0, 0, 1, 1, 2, 2, 2, 1, 1]

%e [0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1]

%e [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1]

%p f3:=r->mul( (x^i-x^(r+1))/(1-x^i), i = 1..r-3); for r from 1 to 10 do series(f3(r),x,50); od:

%t f[n_, x_]:= Product[(x^j -x^(n+2))/(1-x^j), {j, n-2}];

%t T[n_]:= CoefficientList[f[n, x], x];

%t Table[T[n], {n, 0, 10}]//Flatten (* _G. C. Greubel_, Sep 14 2021 *)

%Y If the initial zeros in each row are omitted, we get A008968.

%Y Cf. A008967, A008968, A106822.

%K nonn,tabf

%O 0,14

%A _N. J. A. Sloane_, May 20 2005