login
A106816
Smallest prime of the set of five consecutive primes whose sum of digits is a set of five distinct primes.
0
1291, 3257, 10079, 12983, 33997, 35159, 35759, 42193, 54983, 67181, 67187, 102071, 102077, 102251, 102253, 110597, 111121, 231779, 265961, 314591, 314597, 402131, 402133, 402137, 411751, 411779, 419933, 419953, 431777, 435359, 530597, 544031
OFFSET
1,1
EXAMPLE
a(1)=1291 is a term because sum of digits of five consecutive primes i.e. (1291, 1297, 1301, 1303, 1307), whose sum of digits (i.e. 13, 19, 5, 7, 11)is a set of five distinct primes.
MATHEMATICA
pr5Q[list_]:=Module[{idnlist=Total[IntegerDigits[#]]&/@ list}, Length[Union[idnlist]]==5&&And@@PrimeQ/@idnlist]
Transpose[Select[Partition[Prime[Range[50000]], 5, 1], pr5Q]][[1]] (* Harvey P. Dale, Feb 14 2011 *)
CROSSREFS
Sequence in context: A179573 A264243 A020401 * A137714 A256677 A139027
KEYWORD
base,nonn
AUTHOR
Shyam Sunder Gupta, May 18 2005
STATUS
approved