login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Smallest prime of the set of seven consecutive primes whose sum of digits is a set of seven distinct primes.
0

%I #9 Oct 02 2013 15:47:29

%S 3511973,5919931,5919937,20309959,20309999,21029951,24129977,66109973,

%T 110003981,152099951,208334953,235639951,290111959,316229981,

%U 361344943,387233993,397629959,418589981,419804933,444941957,519014957,522908993

%N Smallest prime of the set of seven consecutive primes whose sum of digits is a set of seven distinct primes.

%e a(1)=3511973 is a term because sum of digits of seven consecutive primes i.e. (3511973, 3511993, 3511999, 3512011, 3512051, 3512053, 3512057), whose sum of digits (i.e. 29, 31, 37, 13, 17, 19, 23)is a set of seven distinct primes.

%o (PARI) dsum(n)=my(s);while(n,s+=n%10;n\=10);s

%o v=vectorsmall(10^6);i=0;forprime(p=2,prime(#v),v[i++]=dsum(p);if(!isprime(v[i]),v[i]=0))

%o for(i=1,#v-6,if(v[i]&&v[i+1]&&v[i+2]&&v[i+3]&&v[i+4]&&v[i+5]&&v[i+6]&&#vecsort(vector(7,j,v[i+j-1]),,8)==7,print1(prime(i)", ")))

%o \\ _Charles R Greathouse IV_, Oct 26 2011

%K base,nonn

%O 1,1

%A _Shyam Sunder Gupta_, May 18 2005