login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fixed point of the morphism 1 -> 1,1,2; 2 -> 3; 3 -> 1,4; 4 -> 1, starting with a(0) = 1.
4

%I #24 Apr 05 2022 03:26:32

%S 1,1,2,1,1,2,3,1,1,2,1,1,2,3,1,4,1,1,2,1,1,2,3,1,1,2,1,1,2,3,1,4,1,1,

%T 2,1,1,1,2,1,1,2,3,1,1,2,1,1,2,3,1,4,1,1,2,1,1,2,3,1,1,2,1,1,2,3,1,4,

%U 1,1,2,1,1,1,2,1,1,2,3,1,1,2,1,1,2,1,1,2,3,1,1,2,1,1,2,3,1,4,1,1,2,1,1,2,3

%N Fixed point of the morphism 1 -> 1,1,2; 2 -> 3; 3 -> 1,4; 4 -> 1, starting with a(0) = 1.

%C 4-symbol substitution for the Pisot characteristic polynomial: x^4 - 2*x^2 - x - 1.

%H G. C. Greubel, <a href="/A106796/b106796.txt">Table of n, a(n) for n = 0..10000</a>

%H Victor F. Sirvent and Boris Solomyak, <a href="https://doi.org/10.4153/CMB-2002-062-3">Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type</a>. Canadian Mathematical Bulletin, 45(4), 2002, 697-710; (page 709 example 3). Also at <a href="https://www.researchgate.net/publication/228561314_Pure_Discrete_Spectrum_for_One-dimensional_Substitution_Systems_of_Pisot_Type">ResearchGate</a>

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%e The first few steps of the substitution are:

%e Start: 1

%e Maps:

%e 1 --> 1 1 2

%e 2 --> 3

%e 3 --> 1 4

%e 4 --> 1

%e -------------

%e 0: (#=1)

%e 1

%e 1: (#=3)

%e 112

%e 2: (#=7)

%e 1121123

%e 3: (#=16)

%e 1121123112112314

%e 4: (#=36)

%e 112112311211231411211231121123141121

%e 5: (#=82)

%e 1121123112112314112112311211231411211121123112112314112112311211231411211121123112

%t s[1]= {1, 1, 2}; s[2]= {3}; s[3]= {1, 4}; s[4]= {1}; t[b_]:= Flatten[s /@ b];

%t a[0]= {1}; a[1]= t[p[0]]; a[n_]:= t[a[n-1]];

%t a[10]

%Y Cf. A106749, A106795, A106797, A106798.

%K nonn

%O 0,3

%A _Roger L. Bagula_, May 17 2005

%E Edited by _G. C. Greubel_, Apr 03 2022