login
24 point graph combinatorial embedding genus one as a substitution.
0

%I #4 Mar 30 2012 17:34:15

%S 1,4,7,4,7,1,2,14,1,22,20,4,7,1,2,14,1,22,20,1,2,14,1,22,20,4,7,0,4,8,

%T 4,15,16,4,7,7,11,9,7,9,17,4,7,1,2,14,1,22,20,1,2,14,1,22,20,4,7,0,4,

%U 8,4,15,16,4,7,7,11,9,7,9,17,1,2,14,1,22,20,4,7,0,4,8,4,15,16,4,7,7,11,9,7

%N 24 point graph combinatorial embedding genus one as a substitution.

%H Wendy Myrvold, <a href="http://www.csr.uvic.ca/~wendym/torus/embedding.html">Embedding Graphs on Surfaces</a>

%F The combinatorial embedding (Genus 1): 0 : 2 3, 1 : 4 7, 2 : 0 4 8, 3 : 0 5 6, 4 : 1 2 14, 5 : 3 18 23, 6 : 3 23 17, 7 : 1 22 20, 8 : 2 21 19, 9 : 10 20 22, 10 : 9 19 21, 11 : 16 18 22, 12 : 15 17 21, 13 : 15 23 16, 14 : 4 15 16, 15 : 12 13 14, 16 : 11 14 13, 17 : 6 20 12, 18 : 5 19 11, 19 : 8 10 18, 20 : 7 9 17, 21 : 8 12 10, 22 : 7 11 9, 23 : 5 13 6,

%t s[0 ] = {2, 3}; s[1 ] = {4, 7}; s[2] = { 0, 4, 8}; s[3 ] = { 0, 5, 6}; s[4 ] = {1, 2, 14}; s[5 ] = {3, 18, 23}; s[6 ] = { 3, 23, 17}; s[7 ] = { 1, 22, 20}; s[8 ] = { 2, 21, 19}; s[9 ] = { 10, 20, 22}; s[10 ] = { 9, 19, 21}; s[11] = { 16, 18, 22}; s[12 ] = { 15, 17, 21}; s[13 ] = { 15, 23, 16}; s[14 ] = { 4, 15, 16}; s[15 ] = { 12, 13, 14}; s[16 ] = { 11, 14, 13}; s[17 ] = { 6, 20, 12}; s[18 ] = { 5, 19, 11}; s[19 ] = { 8, 10, 18}; s[20 ] = {7, 9, 17}; s[21 ] = { 8, 12, 10}; s[22 ] = { 7, 11, 9}; s[23 ] = { 5, 13, 6}; t[a_] := Join[a, Flatten[s /@ a]]; p[0] = {0}; p[1] = t[{1}]; p[n_] := t[p[n - 1]] aa = p[4]

%K nonn,uned,obsc

%O 0,2

%A _Roger L. Bagula_, May 15 2005