The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106737 a(n) = Sum_{k=0..n} ({binomial(n+k,n-k)*binomial(n,k)} mod 2). 23

%I #45 Oct 22 2016 12:42:18

%S 1,2,2,3,2,4,3,4,2,4,4,6,3,6,4,5,2,4,4,6,4,8,6,8,3,6,6,9,4,8,5,6,2,4,

%T 4,6,4,8,6,8,4,8,8,12,6,12,8,10,3,6,6,9,6,12,9,12,4,8,8,12,5,10,6,7,2,

%U 4,4,6,4,8,6,8,4,8,8,12,6,12,8,10,4,8,8,12,8,16,12,16,6,12,12,18,8,16,10,12

%N a(n) = Sum_{k=0..n} ({binomial(n+k,n-k)*binomial(n,k)} mod 2).

%C The formula (the recurrence, if confirmed to be equal to sum binomial formula) implies that this is the run length transform of the sequence 1,2,3,4,5,... - _N. J. A. Sloane_, Feb 05 2015. Note: That sequence should be considered as a successor function a(n) = n+1, starting from offset 0. See also A020725. - _Antti Karttunen_, Oct 15 2016

%C The recurrence formula is correct. See paper in links. - _Chai Wah Wu_, Oct 16 2016

%H Chai Wah Wu, <a href="/A106737/b106737.txt">Table of n, a(n) for n = 0..10000</a>

%H Chai Wah Wu, <a href="https://arxiv.org/abs/1610.06166">Sums of products of binomial coefficients mod 2 and run length transforms of sequences</a>, arXiv:1610.06166 [math.CO], 2016.

%F a(0)=1, a(2n) = a(n), a(4n+1) = 2*a(2n), a(4n+3) = 2*a(2n+1) - a(n).

%F From _Antti Karttunen_, Oct 15 2016: (Start)

%F a(n) = A000005(A005940(1+n)). [Follows from the Run Length Transform-interpretation.]

%F For n > 1, a(n^2) is always even. [Based on RLT-interpretation. n^2 = 1 modulo 4 for all odd n and ((2^k)*n)^2 = 2^(2k) * (n^2), thus the last 1-bit is always alone and contributes 2 to the product, making it even.]

%F (End)

%t Table[Sum[Mod[#, 2] &[Binomial[n + k, n - k] Binomial[n, k]], {k, 0, n}], {n, 0, 95}] (* _Michael De Vlieger_, Oct 17 2016 *)

%o (PARI) a(n) = sum(k=0, n, (binomial(n+k,n-k)*binomial(n,k)) % 2); \\ _Michel Marcus_, Dec 08 2013

%o (Python)

%o def A106737(n):

%o return sum(int(not (~(n+k) & (n-k)) | (~n & k)) for k in range(n+1)) # _Chai Wah Wu_, Feb 09 2016

%o (Scheme, two mathematically equal implementations, based on RLT-interpretation)

%o ;; The first one implements the given recurrence and uses memoization-macro definec:

%o (definec (A106737 n) (cond ((zero? n) 1) ((even? n) (A106737 (/ n 2))) ((= 1 (modulo n 4)) (* 2 (A106737 (/ (- n 1) 2)))) (else (- (* 2 (A106737 (/ (- n 1) 2))) (A106737 (/ (- n 3) 4))))))

%o ;; This one applies the Run Length Transform explicitly to r -> r+1 function:

%o (define (A106737 n) (fold-left (lambda (a r) (* a (+ 1 r))) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2))))) ;; See A227349 for the required other functions.

%o ;; _Antti Karttunen_, Oct 15 2016

%Y Row sums of triangle in A253084.

%Y Cf. A000005, A005940, A020725, A227349, A277335 (positions of odd terms).

%Y Cf. also A153013.

%K nonn

%O 0,2

%A _Benoit Cloitre_, May 15 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 13:35 EDT 2024. Contains 372519 sequences. (Running on oeis4.)