login
Smallest of seven consecutive primes the sum of the digits of each of which is prime.
1

%I #10 Jan 05 2020 16:19:29

%S 3251,3253,4133,4373,4391,14293,14303,14321,27073,27077,34183,67169,

%T 102071,102983,106103,106109,110597,200041,200063,200087,210011,

%U 210019,210031,231719,243011,250051,302873,314591,388837,402131,431731,549977

%N Smallest of seven consecutive primes the sum of the digits of each of which is prime.

%H Harvey P. Dale, <a href="/A106722/b106722.txt">Table of n, a(n) for n = 1..1000</a>

%e a(1)=3251 is a term because this is smallest of seven consecutive primes i.e. 3251,3253,3257,3259,3271,3299 and 3301, whose sum of digits is prime i.e. 3+2+5+1=11, 3+2+5+3=13, 3+2+5+7=17, 3+2+5+9=19, 3+2+7+1=13, 3+2+9+9=23 and 3+3+0+1=7.

%t Select[Partition[Prime[Range[50000]],7,1],AllTrue[Total/@ (IntegerDigits /@ #),PrimeQ]&][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jan 05 2020 *)

%K base,nonn

%O 1,1

%A _Shyam Sunder Gupta_, May 14 2005

%E Definition clarified by _Harvey P. Dale_, Jan 05 2020