login
A106660
A triangle with sides that are three consecutive integers has an area that is a prime after rounding. The first of the consecutive numbers gives the sequence.
0
2, 11, 14, 17, 29, 31, 40, 47, 48, 94, 96, 98, 106, 111, 116, 118, 126, 144, 171, 172, 173, 178, 179, 188, 206, 216, 237, 238, 245, 246, 261, 265, 282, 284, 298, 317, 320, 326, 355, 366, 371, 376, 428, 442, 470, 496, 556, 560, 562, 570, 587, 605, 609, 613, 620
OFFSET
1,1
FORMULA
Simply pass three consecutive integers through the formula that gives the area of a triangle from the three sides.
EXAMPLE
For triangle of sides 17,18,19 the formula gives 139.4 and this rounds to a prime.
MAPLE
Digits := 60 : isA106660 := proc(p) local q, r, s, area ; q := p+1 ; r := q+1 ; s := (p+q+r)/2 ; area := round(sqrt(s*(s-p)*(s-q)*(s-r))) ; RETURN(isprime(area)) ; end: for n from 1 to 900 do if isA106660(n) then printf("%d, ", n) ; fi ; od : # R. J. Mathar, Jun 08 2007
MATHEMATICA
With[{c=Sqrt[3]/4}, Select[Range[700], PrimeQ[Floor[1/2+c Sqrt[#^2 (#^2-4)]]]&] -1] (* Harvey P. Dale, Oct 25 2011 *)
CROSSREFS
Sequence in context: A266991 A041971 A299531 * A130288 A287395 A031192
KEYWORD
nonn
AUTHOR
J. M. Bergot, May 19 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Jun 08 2007
STATUS
approved