login
Write numbers 0, 1, 2, ... in binary under each other, right-adjusted; shift the 2^k's column upwards by prime(k+1) places (for k >= 0); read the resulting array across rows starting at the (old) zero row; convert to decimal.
0

%I #11 Sep 08 2013 19:54:50

%S 6,13,12,11,10,25,24,31,30,21,20,19,18,17,16,23,22,29,28,59,58,41,40,

%T 47,46,37,36,35,34,33,32,39,38,45,44,43,42,57,56,63,62,53,52,51,50,49,

%U 48,119,118,125,124,91,90,73,72,79,78,69,68,67,66,65,64,71,70,77,76,75,74

%N Write numbers 0, 1, 2, ... in binary under each other, right-adjusted; shift the 2^k's column upwards by prime(k+1) places (for k >= 0); read the resulting array across rows starting at the (old) zero row; convert to decimal.

%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>].

%F a(n) = Sum_{k >= 0} 2^k*(1-(-1)^floor((n+prime(k+1))/2^k))/2.

%e The array before the columns are shifted upwards:

%e --------- <- the "zero" line

%e ....00000

%e ....00001

%e ....00010

%e ....00011

%e ....00100

%e ....00101

%e ....00110

%e ....00111

%e ....01000

%e .........

%e After the upwards shifts:

%e ....0

%e ....0

%e ....0

%e ....0

%e ....00

%e ....00

%e ....000

%e ....000

%e ....0000

%e ....00000

%e ....00111

%e --------- <- the "zero" line

%e ....00110 = 6

%e ....01101 = 13

%e ....01100 = 12

%e ....01011 = 11

%e ....01010 = 10

%e ....11001 = 25

%e ....11000 = 24

%e ....11111 = 31

%e ....11110 = 30

%e .........

%o (PARI) {a(n) = local(s, m, k); s=0;k=0;while(1,m=floor((n+prime(k+1))/2^k);if(m==0,return(s));if(m%2,s+=2^k);k++)} (Alekseyev)

%Y Cf. A102370.

%K nonn,easy,base

%O 0,1

%A _N. J. A. Sloane_ and _Philippe Deléham_, Feb 13 2005

%E More terms from _Max Alekseyev_, May 17 2005