Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #90 Nov 25 2022 13:18:07
%S 0,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15,2,17,9,19,5,21,11,23,3,25,13,27,7,
%T 29,15,31,4,33,17,35,9,37,19,39,5,41,21,43,11,45,23,47,6,49,25,51,13,
%U 53,27,55,7,57,29,59,15,61,31,63,8,65,33,67,17,69,35,71,9,73,37,75,19,77,39,79
%N Numerator of n/(n+8).
%C The graph of this sequence is made up of four linear functions: a(n_odd)=n, a(n=2+4i)=n/2, a(4+8i)=n/4, a(8i)=n/8. - _Zak Seidov_, Oct 30 2006. [In general, f(n) = numerator of n/(n+m) consists of linear functions n/d_i, where d_i are divisors of m (including 1 and m).]
%C a(n+2), n>=0, is the denominator of the harmonic mean H(n,2) = 4*n/(n+2). a(n+2) = (n+2)/gcd(n+2,8). a(n+5) = A227042(n+2, 2), n >= 0. - _Wolfdieter Lang_, Jul 04 2013
%C The sequence p(n) = a(n-4), n>=1, with a(-3) = a(3) = 3, a(-2) = a(2) = 1 and a(-1) = a(1) = 1, appears in the problem of writing 2*sin(2*Pi/n) as an integer in the algebraic number field Q(rho(q(n))), where rho(k) = 2*cos(Pi/k) and q(n) = A225975(n). One has 2*sin(2*Pi/n) = R(p(n), x) modulo C(q(n), x), with x = rho(q(n)) and the integer polynomials R and C given in A127672 and A187360, respectively. See a comment on A225975. - _Wolfdieter Lang_, Dec 04 2013
%C A204455(n) divides a(n) for n>=1. - _Alexander R. Povolotsky_, Apr 06 2015
%C A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - _Peter Bala_, Feb 20 2019
%H N. J. A. Sloane, <a href="/A106609/b106609.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1).
%F a(n) = 2*a(n-8) - a(n-16).
%F G.f.: x* (x^2-x+1) * (x^12 +2*x^11 +4*x^10 +3*x^9 +4*x^8 +4*x^7 +7*x^6 +4*x^5 +4*x^4 +3*x^3 +4*x^2 +2*x +1) / ( (x-1)^2 *(x+1)^2 *(x^2+1)^2 *(x^4+1)^2 ). - _R. J. Mathar_, Dec 02 2010
%F From _R. J. Mathar_, Apr 18 2011: (Start)
%F a(n) = A109049(n)/8.
%F Dirichlet g.f. zeta(s-1)*(1-1/2^s-1/2^(2s)-1/2^(3s)).
%F Multiplicative with a(2^e) = 2^max(0,e-3). a(p^e) = p^e if p>2. (End)
%F a(n) = n/gcd(n,8), n >= 0. See the harmonic mean comment above. - _Wolfdieter Lang_, Jul 04 2013
%F a(n) = n if n is odd; for n == 0 (mod 8) it is n/8, for n == 2 or 6 (mod 8) it is n/2 and for n == 4 (mod 8) it is n/4. - _Wolfdieter Lang_, Dec 04 2013
%F From _Peter Bala_, Feb 20 2019: (Start)
%F O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - F(x^2) - F(x^4) - F(x^8), where F(x) = x/(1 - x)^2.
%F More generally, for m >= 1, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 2^m)*( F(m,x^2) + F(m,x^4) + F(m,x^8) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m-th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
%F Sum_{n >= 1} (1/n)*a(n)*x^n = G(x) - (1/2)*G(x^2) - (1/4)*G(x^4) - (1/8)*G(x^8), where G(x) = x/(1 - x).
%F Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (1/2^2)*L(x^2) - (1/4)^2*L(x^4) - (1/8)^2*L(x^8), where L(x) = Log(1/(1 - x)).
%F Sum_{n >= 1} (1/a(n))*x^n = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8). (End)
%F Sum_{k=1..n} a(k) ~ (43/128) * n^2. - _Amiram Eldar_, Nov 25 2022
%p a := n -> iquo(n, [8, 1, 2, 1, 4, 1, 2, 1][1 + modp(n, 8)]):
%p seq(a(n), n=0..79); # using _Wolfdieter Lang_'s formula, _Peter Luschny_, Feb 22 2019
%t f[n_]:=Numerator[n/(n+8)];Array[f,100,0] (* _Vladimir Joseph Stephan Orlovsky_, Feb 16 2011 *)
%t LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1},{0,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15},100] (* _Harvey P. Dale_, Sep 27 2019 *)
%o (Sage) [lcm(n,8)/8 for n in range(0, 100)] # _Zerinvary Lajos_, Jun 09 2009
%o (Magma) [Numerator(n/(n+8)): n in [0..100]]; // _Vincenzo Librandi_, Apr 18 2011
%o (PARI) vector(100, n, n--; numerator(n/(n+8))) \\ _G. C. Greubel_, Feb 19 2019
%o (GAP) List([0..80],n->NumeratorRat(n/(n+8))); # _Muniru A Asiru_, Feb 19 2019
%Y Cf. A109049, A204455, A225975, A227042 (second column, starting with a(5)).
%Y Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).
%K nonn,frac,mult,easy
%O 0,4
%A _N. J. A. Sloane_, May 15 2005