login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) - 2*a(n-2) - 3*a(n-3) - ... - (n-1)*a(1), a(1) = a(2) = 3, a(3) = -3.
3

%I #15 Sep 08 2022 08:45:18

%S 3,3,-3,-18,-33,-15,84,261,333,-138,-1557,-3315,-2436,6153,24009,

%T 36390,1431,-129639,-323292,-318819,400725,2149686,3807795,1476405,

%U -10310388,-30697599,-37588047,20103078,186854271,384871329,260548788,-769001739,-2840006499

%N a(n) = a(n-1) - 2*a(n-2) - 3*a(n-3) - ... - (n-1)*a(1), a(1) = a(2) = 3, a(3) = -3.

%H Colin Barker, <a href="/A106542/b106542.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-5,2).

%F a(n) = a(n-1) - Sum_{k=2..n-1} k*a(n-k), with a(1) = a(2) = 3, a(3) = -3.

%F a(n) = 3*A106540(n).

%F From _Colin Barker_, Dec 04 2015: (Start)

%F a(n) = 3*a(n-1) - 5*a(n-2) + 2*a(n-3) for n>3.

%F G.f.: 3*x*(1-x)^2/(1-3*x+5*x^2-2*x^3). (End)

%t LinearRecurrence[{3,-5,2}, {3,3,-3}, 40] (* _G. C. Greubel_, Sep 03 2021 *)

%o (PARI) a=vector(40); a[1]=3; for(n=2, #a, a[n]=a[n-1]-sum(k=2, n-1, k*a[n-k])); a[1..#a] \\ _Colin Barker_, Dec 04 2015

%o (Magma) I:=[3,3,-3]; [n le 3 select I[n] else 3*Self(n-1) - 5*Self(n-2) + 2*Self(n-3): n in [1..41]]; // _G. C. Greubel_, Sep 03 2021

%o (Sage)

%o def A106542_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( 3*x*(1-x)^2/(1-3*x+5*x^2-2*x^3) ).list()

%o a=A106542_list(41); a[1:] # _G. C. Greubel_, Sep 03 2021

%Y Cf. A106540, A106541.

%K easy,sign

%O 1,1

%A _Alexandre Wajnberg_, May 08 2005