Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jul 06 2018 08:50:59
%S 3,3,2,6,6,14,18,36,58,108,186,352,630,1182,2190,4116,7710,14602,
%T 27594,52488,99878,190746,364722,699252,1342182,2581428,4971066,
%U 9587580,18512790,35792568,69273666,134219796,260301174,505294128,981706830
%N Necklaces with n beads of 3 colors, no 2 adjacent beads the same color.
%H Andrew Howroyd, <a href="/A106365/b106365.txt">Table of n, a(n) for n = 1..500</a>
%H Petros Hadjicostas, <a href="/A106365/a106365.pdf">Proof of an explicit formula for Bower's CycleBG transform</a>
%H <a href="/index/Ne#necklaces">Index entries for sequences related to necklaces</a>
%F CycleBG transform of (3, 0, 0, 0, ...)
%F CycleBG transform T(A) = invMOEBIUS(invEULER(Carlitz(A)) + A(x^2) - A) + A.
%F Carlitz transform T(A(x)) has g.f. 1/(1-sum(k>0, (-1)^(k+1)*A(x^k))).
%F a(n) = (1/n)*sum_{d divides n} phi(n/d)*A092297(d) (n>1). - _Azuma Seiichi_, Oct 25 2014
%F a(n) = -1+(-1)^n+A000031(n) (n>1). - _Azuma Seiichi_, Oct 25 2014 [Corrected by _Petros Hadjicostas_, Feb 16 2018.]
%F From _Petros Hadjicostas_, Feb 16 2018: (Start)
%F General formula for the CycleBG transform: T(A)(x) = A(x) - Sum_{k>=0} A(x^(2k+1)) + Sum_{k>=1} (phi(k)/k)*log(Carlitz(A)(x^k)). For a proof, see the links above. (For this sequence, A(x) = 3*x.)
%F G.f.: Sum_{n>=1} a(n)*x^n = 3*x - 2*x/(1-x^2) - Sum_{n>=1} (phi(n)/n)*log(1-2*x^n) = 3*x - Sum_{n>=1} (phi(n)/n)*(2*log(1+x^n) + log(1-2*x^n)).
%F (End)
%t a[n_] := If[n==1, 3, Sum[EulerPhi[n/d]*(2*(-1)^d+2^d), {d, Divisors[n]}]/n ];
%t Array[a, 35] (* _Jean-François Alcover_, Jul 06 2018, after _Andrew Howroyd_ *)
%o (PARI) a(n) = if(n==1, 3, sumdiv(n, d, eulerphi(n/d)*(2*(-1)^d + 2^d))/n); \\ _Andrew Howroyd_, Oct 14 2017
%Y Column 3 of A208535.
%Y Cf. A000031, A001867.
%K nonn
%O 1,1
%A _Christian G. Bower_, Apr 29 2005