Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Mar 27 2024 23:55:52
%S 5,7,11,13,17,31,37,41,53,79,107,199,233,239,311,331,337,389,463,523,
%T 541,547,557,563,577,677,769,853,937,971,1009,1021,1033,1049,1061,
%U 1201,1237,1291,1307,1361,1427,1453,1543,1657,1699,1723,1747,1753,1759,1787,1801,1811,1861,1877,1997,1999
%N Primes p such that for all initial conditions (x(0),x(1),x(2),x(3),x(4)) in [0..p-1]^5 except [0,0,0,0,0], the 5-step recurrence x(k) = x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5) (mod p) has the same period.
%C The first term not in A371566 is a(105) = 4259.
%H Robert Israel, <a href="/A106309/b106309.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a>
%H Robert Israel, <a href="/A106309/a106309.pdf">Linear Recurrences With a Single Minimal Period</a>
%e a(3) = 11 is a term because the recurrence has period 16105 for all initial conditions except (0,0,0,0,0).
%p filter:= proc(p) local Q,q,F,i,z,d,k,kp,G,alpha;
%p Q:= z^5 - z^4 - z^3 - z^2 - z - 1;
%p if Irreduc(Q) mod p then return true fi;
%p F:= (Factors(Q) mod p)[2];
%p if ormap(t -> t[2]>1, F) then return false fi;
%p for i from 1 to nops(F) do
%p q:= F[i][1];
%p d:= degree(q);
%p if d = 1 then
%p kp:= numtheory:-order(solve(q,z),p);
%p else
%p G:= GF(p,d, q);
%p alpha:= G:-ConvertIn(z);
%p kp:= G:-order(alpha);
%p fi;
%p if i = 1 then k:= kp
%p elif kp <> k then return false
%p fi;
%p od;
%p true
%p end proc:
%p select(filter, [seq(ithprime(i),i=1..1000)]);
%Y Cf. A106287 (orbits of 5-step sequences). Contains A371566.
%K nonn,more
%O 1,1
%A _T. D. Noe_, May 02 2005, revised May 12 2005
%E 4259 found by D. S. McNeil.
%E Edited by _Robert Israel_, Mar 27 2024